<<和右移運算符>>分別進行了重載,使其能夠用於不同數據的輸入輸出,但是輸入輸出的對象只能是 C++ 自帶的數據類型,包括 int、float、bool 等基本類型,以及 string、complex 等標准庫自定義的類型(也就是類)。其實 C++ 標准庫已經提供了 complex 類,能夠很好地支持復數運算,但是這裡我們又自己定義了一個 complex 類,這樣做僅僅是為了教學演示。本節要達到的目標是讓復數的輸入輸出和 int、float 等基本類型一樣簡單。假設 num1、num2 是復數,那麼輸出形式就是:
cout<<num1<<num2<<endl;
輸入形式就是:cin>>num1>>num2;
要想達到這個目標,就必須以全局函數的形式重載<<和>>。>>,使它能夠讀入兩個 double 類型的數據,並轉換為一個復數,保存到復數對象中:
istream & operator>>(istream &in, complex &A){
in >> A.m_real >> A.m_imag;
return in;
}
istream 表示輸入流,cin 是 istream 類的對象,只不過這個對象是在標准庫中定義的。之所以返回 istream 類對象的引用,是為了能夠連續讀取復數,讓代碼書寫更加漂亮,例如:
cin>>num1>>num2;
如果不返回引用,那就只能一個一個地讀取了:
cin>>num1;
cin>>num2;
friend istream & operator>>(istream & in , complex &a);
>>運算符可以按照下面的方式使用:
complex c;
cin>>c;
1.45 2.34↙後,這兩個小數就分別成為對象 c 的實部和虛部了。cin>> c;這一語句其實可以理解為:
operator<<(cin , c);
ostream & operator<<(ostream &out, complex &A){
out << A.m_real <<" + "<< A.m_imag <<" i ";
return out;
}
ostream 表示輸出流,cout 是 ostream 類的對象。由於采用了引用的方式進行參數傳遞,並且也返回了對象的引用,所以重載後的運算符可以實現連續輸出。friend ostream & operator<<(ostream &out, complex &A);
#include <iostream>
using namespace std;
class complex{
public:
complex(): m_real(0.0), m_imag(0.0){ };
complex(double a, double b): m_real(a), m_imag(b){ };
public:
friend complex operator+(const complex & A, const complex & B);
friend complex operator-(const complex & A, const complex & B);
friend complex operator*(const complex & A, const complex & B);
friend complex operator/(const complex & A, const complex & B);
friend istream & operator>>(istream & in, complex & A);
friend ostream & operator<<(ostream & out, complex & A);
private:
double m_real; //實部
double m_imag; //虛部
};
//重載加法運算符
complex operator+(const complex & A, const complex &B){
complex C;
C.m_real = A.m_real + B.m_real;
C.m_imag = A.m_imag + B.m_imag;
return C;
}
//重載減法運算符
complex operator-(const complex & A, const complex &B){
complex C;
C.m_real = A.m_real - B.m_real;
C.m_imag = A.m_imag - B.m_imag;
return C;
}
//重載乘法運算符
complex operator*(const complex & A, const complex &B){
complex C;
C.m_real = A.m_real * B.m_real - A.m_imag * B.m_imag;
C.m_imag = A.m_imag * B.m_real + A.m_real * B.m_imag;
return C;
}
//重載除法運算符
complex operator/(const complex & A, const complex & B){
complex C;
double square = A.m_real * A.m_real + A.m_imag * A.m_imag;
C.m_real = (A.m_real * B.m_real + A.m_imag * B.m_imag)/square;
C.m_imag = (A.m_imag * B.m_real - A.m_real * B.m_imag)/square;
return C;
}
//重載輸入運算符
istream & operator>>(istream & in, complex & A){
in >> A.m_real >> A.m_imag;
return in;
}
//重載輸出運算符
ostream & operator<<(ostream & out, complex & A){
out << A.m_real <<" + "<< A.m_imag <<" i ";;
return out;
}
int main(){
complex c1, c2, c3;
cin>>c1>>c2;
c3 = c1 + c2;
cout<<"c1 + c2 = "<<c3<<endl;
c3 = c1 - c2;
cout<<"c1 - c2 = "<<c3<<endl;
c3 = c1 * c2;
cout<<"c1 * c2 = "<<c3<<endl;
c3 = c1 / c2;
cout<<"c1 / c2 = "<<c3<<endl;
return 0;
}
運行結果: