題目鏈接
http://codeforces.com/gym/100917/problem/D
problem description
Famous Berland coder and IT manager Linus Gates announced his next proprietary open-source system "Winux 10.04 LTS"
In this system command "dir -C" prints list of all files in the current catalog in multicolumn mode.
Lets define the multicolumn mode for number of lines l. Assume that filenames are already sorted lexicographically.
, i.e. sum of widths of each column plus number of columns minus one.Example of multi-column output:
a accd e t
aba b f wtrt
abacaba db k
In the example above width of output is equal to 19.
"dir -C" command selects minimal l, such that width of the output does not exceed width of screen w.
Given information about filename lengths and width of screen, calculate number of lines l printed by "dir -C" command.
InputFirst line of the input contains two integers n and w — number of files in the list and width of screen (1 ≤ n ≤ 105, 1 ≤ w ≤ 109).
Second line contains n integers fi — lengths of filenames. i-th of those integers represents length of i-th filename in the lexicographically ordered list (1 ≤ fi ≤ w).
OutputPrint one integer — number of lines l, printed by "dir -C" command.
Examples input11 20output
1 3 7 4 1 2 1 1 1 1 4
3
題意:有n個目錄名字符串,長度為a[1]~a[n] 屏幕寬為w ,現在要按照已經給的目錄循序一列一列的放,每一列放x個,最後一列放<=x個 要求每一列目錄名左端對整齊 ,形成一個長方形的塊 ,且塊與塊之間空一格,且不能超過屏幕的寬度,求最小的行數;
思路:先對輸入長度處理,用ST算出每個區間的最大值,然後枚舉行數x 從1 ~ n;
代碼如下:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <map>
#include <cmath>
using namespace std;
typedef long long LL;
const int MAXN = 1e5+5;
int a[MAXN],m[30][MAXN];
int n;
LL w;
int main()
{
while(scanf("%d%I64d",&n,&w)!=EOF)
{
memset(m,0,sizeof(m));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
m[0][i]=a[i];
}
for(int i=1;i<=(int)log(n)/log(2);i++)
{
for(int j=1;j+(1<<i)-1<=n;j++)
m[i][j]=max(m[i-1][j],m[i-1][j+(1<<(i-1))]);
}
for(int i=1;i<=n;i++)
{
int k=(int)log(i);
long long sum=0;
for(int j=0;j<n/i;j++)
{
sum+=(long long)max(m[k][j*i+1],m[k][i*(j+1)-(1<<k)+1])+1;
}
if(n%i!=0) {
k=(int)log(n%i);
sum+=(long long)max(m[k][n-n%i+1],m[k][n-(1<<k)+1])+1;
}
if(sum-1<=w){
printf("%d\n",i);
break;
}
}
}
return 0;
}