身份證校驗—神秘三位數—生日相同概率—四方定理—因數分解—組合數
①身份證校驗
如果讓你設計個程序,用什麼變量保存身份證號碼呢?長整數可以嗎?不可以!
因為有人的身份證最後一位是"X"
實際上,除了最後一位的X,不會出現其它字母!
身份證號碼18位 = 17位 + 校驗碼
校驗碼的計算過程:
例如:身份證前17位 = ABCDEFGHIJKLMNOPQ
A~Q 每位數字乘以權值求和(每位數字和它對應的“權”相乘後累加)
17位對應的權值分別是:
7 9 10 5 8 4 2 1 6 3 7 9 10 5 8 4 2
求出的總和再對11求模
然後按下表映射:
余數 0 1 2 3 4 5 6 7 8 9 10
校驗碼: 1 0 X 9 8 7 6 5 4 3 2
char verifyCode(char* s)
{
static int weight[] = {7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2};
static char map[] = {'1','0','X','9','8','7','6','5','4','3','2'};
int sum = 0;
for(int i=0; i<17; i++)
{
sum += (______________) * weight[i]; // 填空
}
return map[____________]; // 填空
}
根據余數進行相應映射,唯一注意一點就是,進來的字符肯定不是整型,需要減去48(即‘0’).
答案:s[i] - '0' sum % 11
②神秘的三位數
有這樣一個3位數,組成它的3個數字階乘之和正好等於它本身。即:abc = a! + b! + c!
下面的程序用於搜索這樣的3位數。
int JC[] = {1,1,2,6,24,120,720,5040,40320,362880};
int i;
for(i=100; i<1000; i++)
{
int sum = 0;
int x = i;
while(__________)
{
sum += JC[x%10];
x /= 10;
}
if(i==sum) printf("%d\n", i);
}
那就像判斷水仙花數一樣,%10再/10的循環。
答案:x>0
③生日相同的概率
生活中人們往往靠直覺來進行粗略的判斷,但有的時候直覺往往很不可靠。比如:如果你們班有30名同學,那麼出現同一天生日的概率有多大呢?你可能不相信,這個概率高達70%左右。
以下的程序就是用計算機隨機模擬,再統計結果。
#define N 30
......
int a[N];
srand( time( NULL ) );
int n = 0;
for(int k=0; k<10000; k++)
{
for(int i=0; i
30個人,同一天生日概率高達70%,( ⊙o⊙ )哇!
言歸正傳,解題。這道題,其實我沒怎麼大看,就看到當tag為true時,n++,但是當tag為true時候,雖然break,裡面有兩層for,於是乎,恍然大悟鳥。。。有時候解題並非要全弄懂他的方法,比賽時間有限啊= 。=
答案: if(tag)
break;
④四方定理
數論中有著名的四方定理:所有自然數至多只要用四個數的平方和就可以表示。
我們可以通過計算機驗證其在有限范圍的正確性。
對於大數,簡單的循環嵌套是不適宜的。下面的代碼給出了一種分解方案。
int f(int n, int a[], int idx)
{
if(______________) return 1; // 填空1
if(idx==4) return 0;
for(int i=(int)sqrt(n); i>=1; i--)
{
a[idx] = i;
if(_______________________) return 1; // 填空2
}
return 0;
}
int main(int argc, char* argv[])
{
for(;;)
{
int number;
printf("輸入整數(1~10億):");
scanf("%d",&number);
int a[] = {0,0,0,0};
int r = f(number, a, 0);
printf("%d: %d %d %d %d\n", r, a[0], a[1], a[2], a[3]);
}
return 0;
}
大體一看代碼結構,就知道,得,又是一道遞歸題目,遞歸方法,也不難理解,就是,原來數減去一個數的平方,再接著找,找的范圍,也不用我們想,題目給了。遞歸結束條件,出了Idx肯定是n了,當n為0,代表找到了,不多說了,return 1。遞歸結束條件定是定了,可是,還有一個return 1,怎麼辦啊?
其實不難,仔細一想就明白了,for循環在找i,找到以後,肯定要向下遞歸下去,那肯定是要執行f函數了,執行f函數會返回值的,一個return0,一個return1,什麼時候return1呢?必然就是當它返回1時,不斷return1,回到主函數。
答案:n==0 f(n-i*i, a, idx+1) == 1
⑤因數分解
因數分解是十分基本的數學運算,應用廣泛。下面的程序對整數n(n>1)進行因數分解。
比如,n=60, 則輸出:2 2 3 5。請補充缺失的部分。
void f(int n)
{
for(int i=2; i1) printf("%d\n", n);
}
因數分解,簡單吧?剛學語言的時候,肯定做過這種題目,藍橋杯出的代碼填空,對於我們大部分做過的題目,一般就會讓我們來優化一下或者簡潔一下代碼,不可能,填我們原來做的時候的代碼。
這道題,顯然也是,你會發現i是一直在++的,例子中也出現了,有可能有兩個2的情況。怎麼回事呢?
我以前做用的是兩個for,然後,找到以後i--,使得i再次為原值,進行判斷。
除了for循環就剩下while了,所以咯,答案一躍而出啊。
答案:while(n%i==0)
⑥組合數
從4個人中選2個人參加活動,一共有6種選法。
從n個人中選m個人參加活動,一共有多少種選法?下面的函數實現了這個功能。
// n 個元素中任取 m 個元素,有多少種取法
int f(int n, int m)
{
if(m>n) return 0;
if(m==0) _______________;
return f(n-1,m-1) + _____________;
}
就是排列組合的問題嘛,4個人選2個,就是C四二。
n個人選m個就是Cnm
當m==0? C30==C33==1咯,所以return 1
第二個空如果想不起來,你不妨看一下判斷條件,出現m>n return 0,輸入的內容不會有m>n的情況吧?
所以只能是,我們遞歸的時候出現啦。
答案: return 1 f(n-1,m)