3181: [Coci2012]BROJ
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 26 Solved: 7
[Submit][Status]
Description
求最小質因子等於p的第n小的正整數(恰好有n-1個最小質因子等於p且比它
小的正整數)。p一定是質數。若答案超過10^9則輸出0。
Input
Output
Sample Input
2 3
Sample Output
9
HINT
1 <= n, p <= 10^9
Source
[Submit][Status]
當n≥29時,枚舉p的倍數,暴力可過。
當n<29時:暴力枚舉不可過
開始找規律---發現循環節
設C為≤p的素數之積
經過cwj的證明:
若P<29,可以直接計算,設C為<=P的質數的積,由於P不大,C只是百萬級的,硬統計C內有多少個符合要求,設符合要求的個數為c,則答案為((N-1)/c)*C+a[(N-1)%c+1],其中a[i]為第i個符合要求的數,現證明其正確性。
我們認為,若i合法,則C+i合法。
現反設C+i非法,則存在p<P滿足p|C+i,因為C為<=P的質數的積,所以p|C,所以p|i,與假設矛盾,得證。
若i合法,則i%c必然合法。故i=a[k]+t*C (t>0)
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define F (1000000009)
#define MAXN (1000000000)
#define MAXP (5000000)
typedef long long ll;
ll n,p;
int a[300]={0},size=0;
bool b[300]={0};
void make_prime(int n)
{
size=0;
b[1]=1;
Fork(i,2,n)
{
if (!b[i]) a[++size]=i;
For(j,size)
{
if (i*a[j]>n) break;
b[i*a[j]]=1;
if (i%a[j]==0) break;
}
}
}
int ans[10000000],tot=0;
int main()
{
// freopen("bzoj3181.in","r",stdin);
while (cin>>n>>p)
{
if (n==1) {cout<<p<<endl;continue;}
if (p>sqrt(MAXN)) {cout<<'0'<<endl;continue;}
if (p>=29)
{
int k=1;
for(int i=2*p;i<=MAXN;i+=p)
{
bool bo=0;
Fork(j,2,p-1)
if (i%j==0) {bo=1;break;}
if (!bo) k++;
if (k==n) {cout<<i<<endl;break;}
}
if (k<n) puts("0");
}
else
{
make_prime(p);
ll C=1;
For(i,size) C*=a[i];//,cout<<C<<endl;
tot=0;
for(ll i=p;i<=C&&i<=MAXN;i+=p)
{
bool bo=0;
For(j,size)
{
if (i%a[j]==0&&a[j]<p) {bo=1;break;}
}
if (!bo) ans[++tot]=i;
}
//if (n<=tot) cout<<ans[n]<<endl;
// if (tot==0) {puts("0");return 0;}
ll ans2=(ll)(n-1)/tot*C+ans[(n-1)%tot+1];
if (ans2>MAXN) puts("0");
else cout<<ans2<<endl;
}
// return 0;
}
return 0;
}
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define F (1000000009)
#define MAXN (1000000000)
#define MAXP (5000000)
typedef long long ll;
ll n,p;
int a[300]={0},size=0;
bool b[300]={0};
void make_prime(int n)
{
size=0;
b[1]=1;
Fork(i,2,n)
{
if (!b[i]) a[++size]=i;
For(j,size)
{
if (i*a[j]>n) break;
b[i*a[j]]=1;
if (i%a[j]==0) break;
}
}
}
int ans[10000000],tot=0;
int main()
{
// freopen("bzoj3181.in","r",stdin);
while (cin>>n>>p)
{
if (n==1) {cout<<p<<endl;continue;}
if (p>sqrt(MAXN)) {cout<<'0'<<endl;continue;}
if (p>=29)
{
int k=1;
for(int i=2*p;i<=MAXN;i+=p)
{
bool bo=0;
Fork(j,2,p-1)
if (i%j==0) {bo=1;break;}
if (!bo) k++;
if (k==n) {cout<<i<<endl;break;}
}
if (k<n) puts("0");
}
else
{
make_prime(p);
ll C=1;
For(i,size) C*=a[i];//,cout<<C<<endl;
tot=0;
for(ll i=p;i<=C&&i<=MAXN;i+=p)
{
bool bo=0;
For(j,size)
{
if (i%a[j]==0&&a[j]<p) {bo=1;break;}
}
if (!bo) ans[++tot]=i;
}
//if (n<=tot) cout<<ans[n]<<endl;
// if (tot==0) {puts("0");return 0;}
ll ans2=(ll)(n-1)/tot*C+ans[(n-1)%tot+1];
if (ans2>MAXN) puts("0");
else cout<<ans2<<endl;
}
// return 0;
}
return 0;
}