題目給出離散的點,要求求出一筆把所有點都連上的最短路徑。
最多才8個點,果斷用暴力求。
用next_permutation舉出全排列,計算出路程,記錄最短路徑。
這題也可以用dfs回溯暴力,但是用最小生成樹要小心一點,最小生成樹求的是最小連通圖,而不是連成一條,不能用Kruscal,Prim算法修改一下也可以使用,改成選點時僅考慮頭尾兩點即可。
代碼:
include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 10;
int p[maxn], rec[maxn], n;
double sum, x[maxn], y[maxn];
double dis(double ax, double ay, double bx, double by) {
double dx, dy;
dx = ax - bx;
dy = ay - by;
return sqrt(dx * dx + dy * dy) + 16;
}
void solve(void) {
double tmp = 0;
for (int i = 0; i < n - 1; i++)
tmp += dis(x[p[i]], y[p[i]], x[p[i + 1]], y[p[i + 1]]);
if (tmp < sum) {
sum = tmp;
for (int i = 0; i < n; i++)
rec[i] = p[i];
}
}
int main() {
int cnt = 0;
while (scanf("%d", &n) && n) {
for (int i = 0; i < n; i++) {
scanf("%lf%lf", &x[i], &y[i]);
p[i] = i;
}
sum = 0xffffff;
do {
solve();
} while (next_permutation(p, p + n));
printf("**********************************************************\n");
printf("Network #%d\n", ++cnt);
for (int i = 0; i < n - 1; i++)
printf("Cable requirement to connect (%d,%d) to (%d,%d) is %.2lf feet.\n", int(x[rec[i]]), int(y[rec[i]]), int(x[rec[i + 1]]), int(y[rec[i + 1]]), dis(x[rec[i]], y[rec[i]], x[rec[i + 1]], y[rec[i + 1]]));
printf("Number of feet of cable required is %.2lf.\n", sum);
}
return 0;
}
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 10;
int p[maxn], rec[maxn], n;
double sum, x[maxn], y[maxn];
double dis(double ax, double ay, double bx, double by) {
double dx, dy;
dx = ax - bx;
dy = ay - by;
return sqrt(dx * dx + dy * dy) + 16;
}
void solve(void) {
double tmp = 0;
for (int i = 0; i < n - 1; i++)
tmp += dis(x[p[i]], y[p[i]], x[p[i + 1]], y[p[i + 1]]);
if (tmp < sum) {
sum = tmp;
for (int i = 0; i < n; i++)
rec[i] = p[i];
}
}
int main() {
int cnt = 0;
while (scanf("%d", &n) && n) {
for (int i = 0; i < n; i++) {
scanf("%lf%lf", &x[i], &y[i]);
p[i] = i;
}
sum = 0xffffff;
do {
solve();
} while (next_permutation(p, p + n));
printf("**********************************************************\n");
printf("Network #%d\n", ++cnt);
for (int i = 0; i < n - 1; i++)
printf("Cable requirement to connect (%d,%d) to (%d,%d) is %.2lf feet.\n", int(x[rec[i]]), int(y[rec[i]]), int(x[rec[i + 1]]), int(y[rec[i + 1]]), dis(x[rec[i]], y[rec[i]], x[rec[i + 1]], y[rec[i + 1]]));
printf("Number of feet of cable required is %.2lf.\n", sum);
}
return 0;
}