矩形嵌套
時間限制:3000 ms | 內存限制:65535 KB
難度:4
描述
有n個矩形,每個矩形可以用a,b來描述,表示長和寬。矩形X(a,b)可以嵌套在矩形Y(c,d)中當且僅當a<c,b<d或者b<c,a<d(相當於旋轉X90度)。例如(1,5)可以嵌套在(6,2)內,但不能嵌套在(3,4)中。你的任務是選出盡可能多的矩形排成一行,使得除最後一個外,每一個矩形都可以嵌套在下一個矩形內。
輸入
第一行是一個正正數N(0<N<10),表示測試數據組數,
每組測試數據的第一行是一個正正數n,表示該組測試數據中含有矩形的個數(n<=1000)
隨後的n行,每行有兩個數a,b(0<a,b<100),表示矩形的長和寬
輸出
每組測試數據都輸出一個數,表示最多符合條件的矩形數目,每組輸出占一行
樣例輸入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
樣例輸出
5
第一種方法:
#include<cstdio>
#include<string.h>
#include<vector>
#include<algorithm>
#define N 1005
using namespace std;
vector<int> vec[N];
int dp[N];
struct rec
{
int l,w;
}a[N];
int nest(rec a1,rec a2) /*判斷兩個矩形是否可以嵌套*/
{
if((a1.l>a2.l&&a1.w>a2.w)||(a1.l>a2.w&&a1.w>a2.l))
return 1;
return 0;
}
int dfs(int x,int n)
{
if(dp[x]!=-1)
return dp[x];
int maxv=0,flag=0;
for(int i=0;i<vec[x].size();i++)
{
flag=1;
maxv=maxv>(dfs(vec[x][i],n)+1)?maxv:dfs(vec[x][i],n)+1;
}
if(!flag)
return dp[x]=1;
return dp[x]=maxv;
}
int main()
{
int t,n,i;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d%d",&a[i].l,&a[i].w);
memset(vec,0,sizeof(vec));
for(i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(i==j)
continue;
if(nest(a[i],a[j])) /*如果i可以嵌套j*/
vec[i].push_back(j);
}
memset(dp,-1,sizeof(dp));
int maxv=0;
for(i=0;i<n;i++)
{
if(dp[i]==-1)
dfs(i,n);
maxv=maxv>dp[i]?maxv:dp[i];
}
printf("%d\n",maxv);
}
return 0;
}
第二種方法:
#include<stdio.h>
#include<algorithm>
using namespace std;
#define N 1005
struct rec
{
int l;
int w;
}a[N];
int dp[N];
bool comp(rec a1,rec a2) /*按長從小到大排序*/
{
if(a1.l==a2.l)
return a1.w<a2.w;
return a1.l<a2.l;
}
int main()
{
int t,i,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%d%d",&a[i].l,&a[i].w);
if(a[i].l<a[i].w) /*保證長比寬大*/
{int temp=a[i].l;a[i].l=a[i].w;a[i].w=temp;}
}
sort(a,a+n,comp);
int maxv=0;
for(i=0;i<n;i++) /*求以i為終點最多嵌套幾個*/
{
dp[i]=1;
for(int j=0;j<i;j++)
{
if((a[j].l<a[i].l)&&(a[j].w<a[i].w)) /*若可以嵌套*/
if(dp[i]<dp[j]+1)
dp[i]=dp[j]+1;
}
if(maxv<dp[i])
maxv=dp[i];
}
printf("%d\n",maxv);
}
return 0;
}