Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
Output
Print each answer in a single line.
Sample Input
13
100
200
1000
Sample Output
1
1
2
2
題意:找出1~n范圍內含有13並且能被13整除的數字的個數
思路:使用記憶化深搜來記錄狀態,配合數位DP來解決
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int bit[15];
int dp[15][15][3];
//dp[i][j][k]
//i:數位
//j:余數
//k:3種操作狀況,0:末尾不是1,1:末尾是1,2:含有13
int dfs(int pos,int mod,int have,int lim)//lim記錄上限
{
int num,i,ans,mod_x,have_x;
if(pos<=0)
return mod == 0 && have == 2;
if(!lim && dp[pos][mod][have] != -1)//沒有上限並且已被訪問過
return dp[pos][mod][have];
num = lim?bit[pos]:9;//假設該位是2,下一位是3,如果現在算到該位為1,那麼下一位是能取到9的,如果該位為2,下一位只能取到3
ans = 0;
for(i = 0; i<=num; i++)
{
mod_x = (mod*10+i)%13;//看是否能整除13,而且由於是從原來數字最高位開始算,細心的同學可以發現,事實上這個過程就是一個除法過程
have_x = have;
if(have == 0 && i == 1)//末尾不是1,現在加入的是1
have_x = 1;//標記為末尾是1
if(have == 1 && i != 1)//末尾是1,現在加入的不是1
have_x = 0;//標記為末尾不是1
if(have == 1 && i == 3)//末尾是1,現在加入的是3
have_x = 2;//標記為含有13
ans+=dfs(pos-1,mod_x,have_x,lim&&i==num);//lim&&i==num,在最開始,取出的num是最高位,所以如果i比num小,那麼i的下一位都可以到達9,而i==num了,最大能到達的就只有,bit[pos-1]
}
if(!lim)
dp[pos][mod][have] = ans;
return ans;
}
int main()
{
int n,len;
while(~scanf("%d",&n))
{
memset(bit,0,sizeof(bit));
memset(dp,-1,sizeof(dp));
len = 0;
while(n)
{
bit[++len] = n%10;
n/=10;
}
printf("%d\n",dfs(len,0,0,1));
}
return 0;
}