C++回溯法實例剖析。本站提示廣大學習愛好者:(C++回溯法實例剖析)文章只能為提供參考,不一定能成為您想要的結果。以下是C++回溯法實例剖析正文
本文實例講述了C++的回溯法,分享給年夜家供年夜家參考之用。詳細辦法剖析以下:
普通來講,回溯法是一種列舉狀況空間中一切能夠狀況的體系辦法,它是一個普通性的算法框架。
解向量a=(a1, a2, ..., an),個中每一個元素ai取自一個無限序列集Si,如許的解向量可以表現一個分列,個中ai是分列中的第i個元素,也能夠表現子集S,個中ai為真當且僅當選集中的第i個元素在S中;乃至可以表現游戲的行為序列或許圖中的途徑。
在回溯法的每步,我們從一個給定的部門解a={a1, a2, ..., ak}開端,測驗考試在最初添加元從來擴大這個部門解,擴大以後,我們必需測試它能否為一個完全解,假如是的話,就輸入這個解;假如不完全,我們必需檢討這個部門解能否仍有能夠擴大成完全解,假如有能夠,遞歸下去;假如沒能夠,從a中刪除新參加的最初一個元素,然後測驗考試該地位上的其他能夠性。
用一個全局變量來掌握回溯能否完成,這個變量設為finished,那末回溯框架以下,可謂是回溯年夜法之精華與神器
bool finished = false;
void backTack(int input[], int inputSize, int index, int states[], int stateSize)
{
int candidates[MAXCANDIDATE];
int ncandidates;
if (isSolution(input, inputSize, index) == true)
{
processSolution(input, inputSize, index);
}
else
{
constructCandidate(input, inputSize, index, candidates, &ncandidates);
for (int i = 0; i < ncandidates; i++)
{
input[index] = candidates[i];
backTack(input, inputSize, index + 1);
if (finished)
return;
}
}
}
不拘泥於框架的情勢,我們可以編寫出以下代碼:
#include <iostream>
using namespace std;
char str[] = "abc";
const int size = 3;
int constructCandidate(bool *flag, int size = 2)
{
flag[0] = true;
flag[1] = false;
return 2;
}
void printCombine(const char *str, bool *flag, int pos, int size)
{
if (str == NULL || flag == NULL || size <= 0)
return;
if (pos == size)
{
cout << "{ ";
for (int i = 0; i < size; i++)
{
if (flag[i] == true)
cout << str[i] << " ";
}
cout << "}" << endl;
}
else
{
bool candidates[2];
int number = constructCandidate(candidates);
for (int j = 0; j < number; j++)
{
flag[pos] = candidates[j];
printCombine(str, flag, pos + 1, size);
}
}
}
void main()
{
bool *flag = new bool[size];
if (flag == NULL)
return;
printCombine(str, flag, 0, size);
delete []flag;
}
采取回溯法框架來盤算字典序分列:
#include <iostream>
using namespace std;
char str[] = "abc";
const int size = 3;
void constructCandidate(char *input, int inputSize, int index, char *states, char *candidates, int *ncandidates)
{
if (input == NULL || inputSize <= 0 || index < 0 || candidates == NULL || ncandidates == NULL)
return;
bool buff[256];
for (int i = 0; i < 256; i++)
buff[i] = false;
int count = 0;
for (int i = 0; i < index; i++)
{
buff[states[i]] = true;
}
for (int i = 0; i < inputSize; i++)
{
if (buff[input[i]] == false)
candidates[count++] = input[i];
}
*ncandidates = count;
return;
}
bool isSolution(int index, int inputSize)
{
if (index == inputSize)
return true;
else
return false;
}
void processSolution(char *input, int inputSize)
{
if (input == NULL || inputSize <= 0)
return;
for (int i = 0; i < inputSize; i++)
cout << input[i];
cout << endl;
}
void backTack(char *input, int inputSize, int index, char *states, int stateSize)
{
if (input == NULL || inputSize <= 0 || index < 0 || states == NULL || stateSize <= 0)
return;
char candidates[100];
int ncandidates;
if (isSolution(index, inputSize) == true)
{
processSolution(states, inputSize);
return;
}
else
{
constructCandidate(input, inputSize, index, states, candidates, &ncandidates);
for (int i = 0; i < ncandidates; i++)
{
states[index] = candidates[i];
backTack(input, inputSize, index + 1, states, stateSize);
}
}
}
void main()
{
char *candidates = new char[size];
if (candidates == NULL)
return;
backTack(str, size, 0, candidates, size);
delete []candidates;
}
比較上述兩種情況,可以發明獨一的差別在於全分列對以後解向量沒有請求,而字典序對以後解向量是有請求的,須要曉得以後解的狀況!
八皇後回溯法求解:
#include <iostream>
using namespace std;
int position[8];
void constructCandidate(int *input, int inputSize, int index, int *states, int *candidates, int *ncandidates)
{
if (input == NULL || inputSize <= 0 || index < 0 || candidates == NULL || ncandidates == NULL)
return;
*ncandidates = 0;
bool flag;
for (int i = 0; i < inputSize; i++)
{
flag = true;
for (int j = 0; j < index; j++)
{
if (abs(index - j) == abs(i - states[j]))
flag = false;
if (i == states[j])
flag = false;
}
if (flag == true)
{
candidates[*ncandidates] = i;
*ncandidates = *ncandidates + 1;
}
}
/*
cout << "ncandidates = " << *ncandidates << endl;
system("pause");*/
return;
}
bool isSolution(int index, int inputSize)
{
if (index == inputSize)
return true;
else
return false;
}
void processSolution(int &count)
{
count++;
}
void backTack(int *input, int inputSize, int index, int *states, int stateSize, int &count)
{
if (input == NULL || inputSize <= 0 || index < 0 || states == NULL || stateSize <= 0)
return;
int candidates[8];
int ncandidates;
if (isSolution(index, inputSize) == true)
{
processSolution(count);
}
else
{
constructCandidate(input, inputSize, index, states, candidates, &ncandidates);
for (int i = 0; i < ncandidates; i++)
{
states[index] = candidates[i];
backTack(input, inputSize, index + 1, states, stateSize, count);
}
}
}
void main()
{
//初始化棋局
for (int i = 0; i < 8; i++)
position[i] = i;
int states[8];
int count = 0;
backTack(position, 8, 0, states, 8, count);
cout << "count = " << count << endl;
}
願望本文所述對年夜家C++法式算法設計的進修有所贊助。