C說話求向量和的兩則成績解答分享。本站提示廣大學習愛好者:(C說話求向量和的兩則成績解答分享)文章只能為提供參考,不一定能成為您想要的結果。以下是C說話求向量和的兩則成績解答分享正文
求一個向量的任何持續子向量的最年夜和
好比向量(31,-41,59,26,-53,58,97,-93,-23,84);
最年夜和是從59到97即為187
#include<stdio.h>
#include<stdlib.h>
//二者的最年夜值
int max( int x, int y );
//三者的最年夜值
int max2( int x, int y, int z );
//最原始的算法,龐雜度為T(n)=O(n*n)
int oringinal( int v[], int len );
//原始基本上變體版,龐雜度為T(n)=O(n*n)
int oringinal_ex( int v[], int len );
//分治法,龐雜度為T(n)=O(n*log(n))
/*
*分治法的思惟是:將原數組分紅兩部門,請求的最年夜值
*要末在右邊這部門外面,要末在左邊這部門外面
*要末就在閣下訂交的接壤處
*/
int divAndCon( int v[], int low, int high );
//掃描法,龐雜度為T(n)=O(n)
int scan(int v[], int len);
void main()
{
int i = 0;
int v[] = {31,-41,59,26,-53,58,97,-93,-23,84};
int len = 0;
int result;
len = sizeof(v) / sizeof(int);
printf("oringinal datas:\n");
for( i = 0; i < len; i++ )
{
printf("%d\t",v[i]);
}
printf("\n");
//最原始的算法
result = oringinal(v,len);
printf("oringinal(v,len):%d\n",result);
//最原始變體的算法
result = oringinal_ex(v,len);
printf("oringinal_ex(v,len):%d\n",result);
//分治法
result = divAndCon(v,0,len-1);
printf("divAndCon(v,0,len):%d\n",result);
//掃描法
result = scan(v,len);
printf("scan(v,len):%d\n",result);
}
//二者的最年夜值
int max( int x, int y )
{
if( x < y )
{
x = y;
}
return x;
}
//三者的最年夜值
int max2( int x, int y, int z )
{
if( x < y )
{
x = y;
}
if( x < z )
{
x = z;
}
return x;
}
//最原始的算法,龐雜度為T(n)=O(n*n)
int oringinal( int v[], int len )
{
int maxsofar = 0;
int i;
int j;
int sum = 0;
//經由過程雙層輪回慢慢掃描,經由過程max( sum, maxsofar)取得以後最年夜值
for( i = 0; i < len; i++ )
{
sum = 0;
for( j = i; j < len; j++ )
{
sum += v[j];
maxsofar = max( sum, maxsofar );
}
}
return maxsofar;
}
//原始基本上變體版,龐雜度為T(n)=O(n*n)
int oringinal_ex( int v[], int len )
{
int i = 0;
int j = 0;
int sum = 0;
int maxsofar = 0;
int *cumarr = ( int * )malloc( len * sizeof(int) );
for( i = 0; i < len; i++ )
{
if( i == 0 )
{
cumarr[0] = v[i];
}
else
{
cumarr[i] = cumarr[i-1] + v[i];
}
}
for( i = 0; i < len; i++ )
for( j = i; j < len; j++ )
{
if( i == 0 )
{
sum = cumarr[i];
}
else
{
sum = cumarr[j] - cumarr[i-1];
}
maxsofar = max(maxsofar,sum);
}
return maxsofar;
}
//分治法,龐雜度為T(n)=O(n*log(n))
int divAndCon( int v[], int low, int high )
{
int mid = 0;
int lmax = 0;
int rmax = 0;
int sum = 0;
int i = 0;
if( low > high )
{
return 0;
}
if( low == high )
{
return max(0,v[low]);
}
mid = ( low + high ) / 2;
lmax = sum = 0;
for( i = mid; i >= low; i-- )
{
sum += v[i];
lmax = max(lmax,sum);
}
rmax = sum = 0;
for( i = mid + 1; i <= high; i++ )
{
sum +=v[i];
rmax = max(rmax,sum);
}
return max2(lmax + rmax,divAndCon(v,low,mid),divAndCon(v,mid+1,high));
}
//掃描法,龐雜度為T(n)=O(n)
int scan(int v[], int len)
{
int maxsofar = 0;
int maxendinghere = 0;
int i = 0;
for( i =0; i < len; i++ )
{
maxendinghere = max(maxendinghere + v[i],0);
maxsofar = max(maxsofar,maxendinghere);
}
return maxsofar;
}
求一個向量的任何持續最接近0的子向量的和
好比向量(31,-41,59,26,-53,58,97,-93,-23,84);
最年夜和是從97到-93即為4
#include<stdio.h>
#include<math.h>
//前往最接近0的數
int closeZero( int x, int y );
//最原始的算法,龐雜度為T(n)=O(n*n)
int oringinal( int v[], int len );
void main()
{
int i = 0;
int v[] = {31,-41,59,26,-53,58,97,-93,-23,84};
int len = 0;
int result;
len = sizeof(v) / sizeof(int);
printf("oringinal datas:\n");
for( i = 0; i < len; i++ )
{
printf("%d\t",v[i]);
}
printf("\n");
//最原始的算法
result = oringinal(v,len);
printf("oringinal(v,len):%d\n",result);
}
//前往最接近0的數
int closeZero( int x, int y )
{
if( abs(x) > abs(y) )
{
x = y;
}
return x;
}
//最原始的算法,龐雜度為T(n)=O(n*n)
int oringinal( int v[], int len )
{
int sofar = v[0];
int i;
int j;
int sum = 0;
for( i = 0; i < len; i++ )
{
sum = 0;
for( j = i; j < len; j++ )
{
sum += v[j];
sofar = closeZero( sum, sofar );
}
}
return sofar;
}
運轉成果: