任意給定兩個包含1-30000個元素的集合A,B(集合中元素類型為任意整型數,且嚴格遞增排列),求A交B、A並B、A-B和B-A集合。
輸入第一行為測試數據組數。每組測試數據兩行,分別為集合A、B。每行第一個數n(1<=n<=30000)為元素數量,後面有n個嚴格遞增的絕對值小於2^31代表集合中包含的數。
對每組測試數據輸出5行,第1行為數據組數,後4行分別為按升序輸出兩個集合的A交B、A並B、A-B和B-A集合。格式見樣例。
1 3 1 2 5 4 2 3 5 8
Case #1: 2 5 1 2 3 5 8 1 3 8
考察知識點:有序表合並,時間復雜度O(n),空間復雜度O(n)
解題思路:1)分析 數據/元素 需要用什麼結構儲存 2)設計算法實現
#include <stdio.h>
#include <malloc.h>
#include <iostream>
#include <stdlib.h>
#define LIST_INIT_SIZE 100
#define LISTINCREMENT 10
#define OK 1
#define OVERFLOW -1
#define ERROR 0
typedef int Status;
typedef int ElemType;
typedef struct SqList{
ElemType * elem; //數組首地址
int listSize; //表容量;當前表的容量
int length; //表長,代表當前數組中有效元素的個數
}SqList;
// 下面實現nitList操作,即初始化一個空的線性表
Status InitList_Sq(SqList &L)
{
L.elem=(ElemType *)malloc(LIST_INIT_SIZE*sizeof(ElemType));
//malloc的返回值類型是void *;
//使用時要及時進行強制類型轉換
if(!L.elem)
exit(OVERFLOW);
L.listSize=LIST_INIT_SIZE;
L.length=0;
return OK;
}
Status CreateList(SqList &La,int na){
for(int i = 1;i<=na;++i){
ElemType e;
// printf("請輸入第%d個元素",i);
scanf("%d",&e);
if(La.length >= La.listSize) {
La.elem=(ElemType *)realloc(La.elem,(La.listSize+LISTINCREMENT)*sizeof(ElemType));
La.listSize += LISTINCREMENT;
}
La.elem[i-1]=e;
La.length++;
}
return OK;
}
void MergeList_Sq(SqList La,SqList Lb,SqList &Ld,SqList &Le)
{ //Ld是交,Le是補
ElemType* pa = La.elem;
ElemType* pb = Lb.elem;
Ld.length = 0;
Ld.listSize = La.length + Lb.length;
Ld.elem = (ElemType*)malloc(Ld.listSize*sizeof(ElemType));
ElemType* pd = Ld.elem;
if(!Ld.elem)
exit(OVERFLOW);
Le.length = 0;
Le.listSize = La.length + Lb.length;
Le.elem = (ElemType*)malloc(Ld.listSize*sizeof(ElemType));
ElemType* pe = Le.elem;
if(!Le.elem)
exit(OVERFLOW);
ElemType* pa_last = La.elem + La.length -1;
ElemType* pb_last = Lb.elem + Lb.length -1;
while(pa <= pa_last && pb <= pb_last)
{
if(*pa <= *pb)
{
if(*pa == *pb)
{
*pd++ = *pa;
Ld.length++;
}
else
{
*pe++ = *pa;
Le.length++;
}
// *pc++ = *pa++;
pa++;
}
else
{
*pe++ = *pb;
Le.length++;
// *pc++ = *pb++;
pb++;
}
}
while(pa <= pa_last)
{
*pe++ = *pa;
Le.length++;
//*pc++ = *pa++;
pa++;
}
while(pb <= pb_last){
*pe++ = *pb;
Le.length++;
// *pc++ = *pb++;
pb++;
}
}
void MergeList_Sq2(SqList La,SqList Lb,SqList &Lc)
{
int i,j;
Lc.length = 0;
Lc.listSize = La.length + Lb.length;
Lc.elem = (ElemType*)malloc(Lc.listSize*sizeof(ElemType));
int n = 0;
for(i = 0;i < La.length;i++){
j = 0;
while((j < Lb.length)&&(La.elem[i] != Lb.elem[j])){
j++;
}
if(j == Lb.length){
Lc.elem[n] = La.elem[i];
++Lc.length; ++n;
}
}
}
void ListPrint_Sq(SqList L){
if(L.length==0) {
printf("\n");
}
else
{
for(int i=0;i<L.length;++i){
if(i==0){
printf("%d",L.elem[i]);
}
else{
printf(" %d",L.elem[i]);
}
}
printf("\n");
}
}
int main()
{
int num,i;
scanf("%d",&num);
for(i = 1;i <= num;i++)
{
SqList La,Lb,Ld,Le,Lf,Lg;
InitList_Sq(La);
InitList_Sq(Lb);
int na,nb;
scanf("%d",&na);
CreateList(La,na);
scanf("%d",&nb);
CreateList(Lb,nb);
MergeList_Sq(La,Lb,Ld,Le);
MergeList_Sq2(La,Ld,Lf);
MergeList_Sq2(Lb,Ld,Lg);
printf("Case #%d:\n",i);
//ListPrint_Sq(Lc);
ListPrint_Sq(Ld);
ListPrint_Sq(Le);
ListPrint_Sq(Lf);
ListPrint_Sq(Lg);
}
return 0;
}