題目鏈接
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4928
與HDU 5794相似 博客鏈接
題意:在一個棋盤狀的網格中,有很多障礙點,求從(1,1)走到(n,m)的方法數?
思路:對障礙點進行排序,兩重循環去重,加上盧卡斯定理快速求組合數;
代碼如下:
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <cmath>
using namespace std;
const long long mod=997;
typedef long long LL;
struct Node
{
long long x;
long long y;
long long s;
}node[105];
int cmp(const Node s1,const Node s2)
{
if(s1.x==s2.x)
return s1.y<s2.y;
return s1.x<s2.x;
}
LL PowMod(LL a,LL b,LL MOD)
{
LL ret=1;
while(b)
{
if(b&1) ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ret;
}
LL fac[1000005];
LL Get_Fact(LL p)
{
fac[0]=1;
for(int i=1; i<=p; i++)
fac[i]=(fac[i-1]*i)%p;
}
LL calc(LL n,LL m,LL p)
{
LL ret=1;
while(n&&m)
{
LL a=n%p,b=m%p;
if(a<b) return 0;
ret=(ret*fac[a]*PowMod(fac[b]*fac[a-b]%p,p-2,p))%p;
n/=p;
m/=p;
}
return ret;
}
int main()
{
long long n,m;
int Case=1,k,T;
Get_Fact(mod);
//cout<<calc(2,0,mod);
cin>>T;
while(T--)
{
scanf("%lld%lld%d",&n,&m,&k);
int tot=0;
long long sum=0;
long long x,y;
for(int i=0;i<k;i++)
{
scanf("%lld%lld",&x,&y);
if(x-1>=1&&y-1>=1) { node[tot].x=x-1; node[tot].y=y-1; tot++; }
if(x-1>=1&&y>=1) { node[tot].x=x-1; node[tot].y=y; tot++; }
if(x-1>=1&&y+1>=1) { node[tot].x=x-1; node[tot].y=y+1; tot++; }
if(x>=1&&y-1>=1) { node[tot].x=x; node[tot].y=y-1; tot++; }
if(x>=1&&y+1>=1) { node[tot].x=x; node[tot].y=y+1; tot++; }
if(x+1>=1&&y-1>=1) { node[tot].x=x+1; node[tot].y=y-1; tot++; }
if(x+1>=1&&y>=1) { node[tot].x=x+1; node[tot].y=y; tot++; }
if(x+1>=1&&y+1>=1) { node[tot].x=x+1; node[tot].y=y+1; tot++; }
node[tot].x=x; node[tot].y=y; tot++;
}
if(tot>0)
sort(node,node+tot,cmp);
//cout<<x<<y<<endl;
//for(int i=0;i<tot;i++)
//cout<<"tot: "<<node[i].x<<" "<<node[i].y<<endl;
sum=calc(n+m-2,n-1,mod)%mod;
// cout<<"n: "<<n<<" m: "<<m<<endl;
//cout<<tot<<endl;
//cout<<sum<<endl;
for(int i=0;i<tot;i++)
{
node[i].s=calc(node[i].x+node[i].y-2,node[i].x-1,mod)%mod;
}
for(int i=0;i<tot;i++)
{
long long tt=calc(n-node[i].x+m-node[i].y,m-node[i].y,mod);
for(int j=i+1;j<tot;j++)
{
if(node[j].y>=node[i].y)
{
long long d1=node[j].y-node[i].y;
long long d2=node[j].x-node[i].x;
node[j].s=(node[j].s-(node[i].s*calc(d1+d2,d1,mod))%mod)%mod;
}
}
sum=(sum-(node[i].s*tt)%mod)%mod;
sum = (sum%mod+mod)%mod;
}
printf("Case #%d: %lld\n",Case++,sum);
}
}