題目一:
Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between).
For example:
Given binary tree {3,9,20,#,#,15,7},
3
/ \
9 20
/ \
15 7
return its zigzag level order traversal as:
[ [3], [20,9], [15,7] ]
confused what "{1,#,2,3}" means? >
read more on how binary tree is serialized on OJ.
分析:層次遍歷的變形哈.沒啥太大的變化,看代碼理解下哈!
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public ArrayList> zigzagLevelOrder(TreeNode root) {
ArrayList> result = new ArrayList>();
if (root == null)
return result;
Queue queue = new LinkedList();
queue.add(root);
int k = 1;
ArrayList list = new ArrayList();
while (!queue.isEmpty()){
list.clear();
while (!queue.isEmpty()){
list.add(queue.remove());
}
ArrayList arrays = new ArrayList();
for(int i=0; i
題目二:
Convert Sorted Array to Binary Search Tree
Given
an array where elements are sorted in ascending order, convert it to a height balanced BST.
題意:給你一個array數組,讓你求出這個數組所能組成的一個平衡的二叉樹,很明顯的遞歸問題哈,用分治的思想把中間的結點作為根結點,再一直遞歸下去就可以了哈!!
AC代碼:
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode sortedArrayToBST(int[] num) {
if (num.length == 0){
return null;
}
return buildBST(num, 0, num.length-1);
}
/*
遞歸調用
*/
public TreeNode buildBST(int[] num, int left, int right){
/*當left > right 的時候,表示是葉子結點的孩子了,返回null*/
if (left > right){
return null;
}
/*取中間值,作為根結點的值*/
int middle = (right + left) / 2;
TreeNode root = new TreeNode(num[middle]);
/*求出左右孩子*/
root.left = buildBST(num, left, middle-1);
root.right = buildBST(num, middle+1, right);
return root;
}
}
類似的題目:
Convert Sorted List to Binary Search Tree
Given
a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
題意:跟上面的一樣,只不過數組換成了鏈表!!果斷要知道如何快速求出鏈表中間的那個結點哈~
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; next = null; }
* }
*/
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode sortedListToBST(ListNode head) {
if (head == null){
return null;
}
return buildBST(head, null);
}
public TreeNode buildBST(ListNode left, ListNode right){
if (right == null && left == null){
return null;
}
if (right != null && right.next == left){
return null;
}
/*求鏈表中間結點的前一個結點 Begin*/
ListNode preLeft = new ListNode(0);
preLeft.next = left;
ListNode tempNode = left;
ListNode preMiddleNode = preLeft;
/*求鏈表中間結點的具體方法*/
while (tempNode != right && tempNode.next != right){
preMiddleNode = preMiddleNode.next;
tempNode = tempNode.next.next;
}
/*求鏈表中間結點的前一個結點 End*/
/*遞歸咯!*/
ListNode middleNode = preMiddleNode.next;
TreeNode root = new TreeNode(middleNode.val);
root.left = buildBST(left, preMiddleNode);
root.right = buildBST(preMiddleNode.next.next, right);
return root;
}
}
題目三:
Surrounded Regions(考察深度搜索)
Given a 2D board containing 'X' and 'O',
capture all regions surrounded by 'X'.
A region is captured by flipping all 'O's into 'X's
in that surrounded region.
For example,
X X X X
X O O X
X X O X
X O X X
After running your function, the board should be:
X X X X
X X X X
X X X X
X O X X
分析:給你一個數組,裡面包含了x(或者X) 還有 o(或者O),要求我們把o(或者O)被x(或X)包圍的情況,轉換成 o -> x 而 O -> X
這個題目,其實是典型的廣度搜索吧。。
解題方法:居然所有的邊界o(或者O),我們都認為它是不被包圍的,那麼我們只要從邊界入手就可以了...我們用一個二維數組flags來確定每個位置該出現什麼字母,如:flags[row][col] = 0 則 row行 col列出現的字母為x(或者X), flags[row][col] = 1 則 row行 col列出現的字母為o(或者O),
把所有處於邊界的o(或者O)加入到queue中,然後就是一個典型的BFS了,只需要循環出隊入隊,並做好標記,如果從隊列中出去的話,證明這個位置一定是沒有被X所包圍的,那麼標記這個位置flags[row][col] = 1;
之後只需要循環flags這個二維數組就可以了。
AC代碼:
public class Solution {
private int[][] flags;//用來標記每個位置的字母
private int rowLength;//行數
private int colLength;//列數
/*自定義放入queue中的數據結構類型*/
class Node{
int i;
int j;
public Node(int i, int j) {
this.i = i;
this.j = j;
}
}
public void solve(char[][] board){
/*初始化*/
rowLength = board.length;
if (rowLength == 0 || board[0].length == 0)
return ;
colLength = board[0].length;
/*初始化flags, queue, 然後把board[][]中的邊界字母為o(或者O)的取出放入queue*/
flags = new int[rowLength][colLength];
Queue queue = new LinkedList();
for (int i=0; i= 0 && (board[row][col-1] == 'o' || board[row][col-1] == 'O' )&& flags[row][col-1] == 0){
queue.add(new Node(row,col-1));
}
//right
if (col+1 < colLength && (board[row][col+1] == 'o' || board[row][col+1] == 'O') && flags[row][col+1] == 0){
queue.add(new Node(row,col+1));
}
//up
if (row-1 >= 0 && (board[row-1][col] == 'o' || board[row-1][col] == 'O')&& flags[row-1][col] == 0){
queue.add(new Node(row-1,col));
}
//down
if (row+1 < rowLength && (board[row+1][col] == 'o' || board[row+1][col] == 'O')&& flags[row+1][col] == 0){
queue.add(new Node(row+1,col));
}
}
/*重新賦值board[][]*/
for (int i=0; i
題目四:
Balanced Binary Tree
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
分析:考察的其實就是對平衡二叉樹概念的理解,和二叉樹求深度的方法的掌握
一棵二叉樹如果滿足平衡的條件,那麼包括它自身,和它的任何一個子樹的左右子樹的深度之差必須要小於2,這樣問題就轉換成了遞歸的了,一直遞歸下去,如果不滿足條件,則把全局的標志flag置為false;
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
private boolean flag = true;
public boolean isBalanced(TreeNode root) {
calDeepthByTree(root);
return flag;
}
public int calDeepthByTree(TreeNode root) {
if (root == null)
return 0;
if (root.left == null && root.right == null)
return 1;
int deepLeft = 0;
int deepRight = 0;
deepLeft = calDeepthByTree(root.left) + 1;
deepRight = calDeepthByTree(root.right) + 1;
if (Math.abs(deepRight - deepLeft) >= 2) {
flag = false;
}
return deepRight > deepLeft ? deepRight : deepLeft;
}
}
題目五:
Minimum Depth of Binary Tree
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
分析: 給我們一個二叉樹,要求出從根結點到葉子結點的最短的路徑(依舊還是遞歸哈!)
很簡單,直接看代碼:
AC代碼:
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int minDepth(TreeNode root) {
/*遞歸結束條件*/
if (root == null)
return 0;
if (root.left == null && root.right == null)
return 1;
int leftdepth = minDepth(root.left);
int rightdepth = minDepth(root.right);
/*當其中左右子樹有一支是為null的時候,那麼路徑也只有另外一支了,不管多長都只能選那條路了*/
if (leftdepth == 0){
return rightdepth+1;
}
if (rightdepth == 0){
return leftdepth+1;
}
/*返回左右子樹中較小的一邊*/
return leftdepth > rightdepth ? rightdepth + 1 : leftdepth + 1;
}
}