題目
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.
click to show follow up.
Follow up:Did you use extra space?
A straight forward solution using O(mn) space is probably a bad idea.
A simple improvement uses O(m + n) space, but still not the best solution.
Could you devise a constant space solution?
題目要求使用常數的額外空間,因此需要借助矩陣本身的空間來輔助存儲,這裡借用了矩陣的第一行和第一列來輔助紀錄該行或該列是否為0.由於第一行第一列自身發生了改變,再用兩個布爾變量紀錄第一行和第一列是否為0即可。
代碼
public class SetMatrixZeroes {
public void setZeroes(int[][] matrix) {
if (matrix == null || matrix.length == 0) {
return;
}
int M = matrix.length;
int N = matrix[0].length;
boolean isFirstRowZero = false;
boolean isFirstColumnZero = false;
for (int j = 0; j < N; ++j) {
if (matrix[0][j] == 0) {
isFirstRowZero = true;
break;
}
}
for (int i = 0; i < M; ++i) {
if (matrix[i][0] == 0) {
isFirstColumnZero = true;
break;
}
}
for (int i = 1; i < M; ++i) {
for (int j = 1; j < N; ++j) {
if (matrix[i][j] == 0) {
matrix[i][0] = 0;
matrix[0][j] = 0;
}
}
}
for (int i = 1; i < M; ++i) {
for (int j = 1; j < N; ++j) {
if (matrix[i][0] == 0 || matrix[0][j] == 0)
matrix[i][j] = 0;
}
}
if (isFirstRowZero) {
for (int j = 0; j < N; ++j) {
matrix[0][j] = 0;
}
}
if (isFirstColumnZero) {
for (int i = 0; i < M; ++i) {
matrix[i][0] = 0;
}
}
}
}