Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6
1 4
2 6
3 12
2 7Sample Output
01背包問題
#include<stdio.h>
int c[3500],w[3500],f[13000]; int main() {
int i,j,k,n,v,m;
while(scanf("%d%d",&n,&m)!=EOF)
{ for(i=0;i<=m;i++)
f[i]=0;
for(i=0;i<n;i++)
scanf("%d%d",c+i,w+i);
for (i = 0; i < n; ++i) {
for (v = m; v >= c[i]; --v) //c[i]可優化為bound,bound = max {V - sum c[i,...n],c[i]}
{ f[v] = (f[v] > f[v - c[i]] + w[i]?f[v] : f[v - c[i]] + w[i]);
} } printf("%d\n",f[m]); } }
01背包問題
#include<stdio.h>
int c[3500],w[3500],f[13000];
int main()
{
int i,j,k,n,v,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=0;i<=m;i++)
f[i]=0;
for(i=0;i<n;i++)
scanf("%d%d",c+i,w+i);
for (i = 0; i < n; ++i)
{
for (v = m; v >= c[i]; --v) //c[i]可優化為bound,bound = max {V - sum c[i,...n],c[i]}
{
f[v] = (f[v] > f[v - c[i]] + w[i]?f[v] : f[v - c[i]] + w[i]);
}
}
printf("%d\n",f[m]);
}
}