做完後,看了解題報告,思路是一樣的。我就直接粘過來吧
最終添加完邊的圖,肯定可以分成兩個部X和Y,其中只有X到Y的邊沒有Y到X的邊,那麼要使得邊數盡可能的多,則X部肯定是一個完全圖,Y部也是,同時X部中每個點到Y部的每個點都有一條邊,假設X部有x個點,Y部有y個點,有x+y=n,同時邊數F=x*y+x*(x-1)+y*(y-1),整理得:F=N*N-N-x*y,當x+y為定值時,二者越接近,x*y越大,所以要使得邊數最多,那麼X部和Y部的點數的個數差距就要越大,所以首先對於給定的有向圖縮點,對於縮點後的每個點,如果它的出度或者入度為0,那麼它才有可能成為X部或者Y部,所以只要求縮點之後的出度或者入度為0的點中,包含節點數最少的那個點,令它為一個部,其它所有點加起來做另一個部,就可以得到最多邊數的圖了
//109MS 2916KB
#include <stdio.h>
#include <string.h>
#define LL long long
const int M = 100005;
const int inf = 0x3f3f3f3f;
struct Edge
{
int to,nxt;
} edge[M];
int head[M],low[M],dfn[M],stack[M+10];
int vis[M],out[M],in[M],belong[M];
int scc,cnt ,top,ep;
LL n,m;
int min (int a,int b)
{
return a > b ? b : a;
}
void addedge (int cu,int cv)
{
edge[ep].to = cv;
edge[ep].nxt = head[cu];
head[cu] = ep ++;
}
void Tarjan(int u)
{
int v;
dfn[u] = low[u] = ++cnt;
stack[top++] = u;
vis[u] = 1;
for (int i = head[u]; i != -1; i = edge[i].nxt)
{
v = edge[i].to;
if (!dfn[v])
{
Tarjan(v);
low[u] = min(low[u],low[v]);
}
else if (vis[v]) low[u] = min(low[u],dfn[v]);
}
if (dfn[u] == low[u])
{
++scc;
do
{
v = stack[--top];
vis[v] = 0;
belong[v] = scc;
}
while (u != v);
}
}
void solve()
{
int u,v;
scc = top = cnt = 0;
memset (vis,0,sizeof(vis));
memset (dfn,0,sizeof(dfn));
memset (out,0,sizeof(out));
memset (in,0,sizeof(in));
for (u = 1; u <= n; u ++)
if (!dfn[u])
Tarjan(u);
for (u = 1; u <= n; u ++)
{
for (int i = head[u]; i != -1; i =edge[i].nxt)
{
v = edge[i].to;
if (belong[u] != belong[v])
{
out[belong[u]] ++;
in[belong[v]] ++;
}
}
}
int num[M],Min;
memset (num,0,sizeof(num));
for (u = 1; u <= n; u ++)
if (!in[belong[u]]) num[belong[u]] ++;
for (u = 1; u <= scc; u ++)
if (num[u]!= 0&&num[u]<Min)
Min = num[u];
memset (num,0,sizeof(num));
for (u = 1; u <= n; u ++)
if (!out[belong[u]]) num[belong[u]] ++;
for (u = 1; u <= scc; u ++)
if (num[u]!= 0&&num[u]<Min)
Min = num[u];
if (scc == 1)
{
printf ("-1\n");
return ;
}
LL ans = n*(n-1)-Min*(n-Min) - m;
printf ("%I64d\n",ans);
}
int main ()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
int T,u,v,cnt = 0;
scanf ("%d",&T);
while (T --)
{
scanf ("%I64d%I64d",&n,&m);
ep = 0;
memset (head,-1,sizeof(head));
for (int i = 0; i < m; i++)
{
scanf ("%d%d",&u,&v);
addedge(u,v);
}
printf ("Case %d: ",++cnt);
solve();
}
return 0;
}