題意:
for (variable = A; variable != B; variable += C)
statement;
給出A,B,C和k(k表示變量是在k位機下的無符號整數),判斷循環次數,不能終止輸出"FOREVER".
思路:
需要求解 (A + x * C) % mod = B
變形之後即 C * x + mod * y = B - A = gcd(C , mod) * [ (B - A) / gcd(C , mod) ]
用擴展歐幾裡德定理 需要求 C * x + mod * y = gcd(C , mod)
a = C, b = mod
即模線性方程
需要注意的是: 把模線性方程求得的特解轉化為正數之後,要模 b/gcd(a,b) [而不是b]***,解釋如下:
因為求得的解的含義是"步數",所以要模"步數對應的周期".
#include <cstdio>
using namespace std;
typedef long long ll;
ll Extended_Euclid(ll a, ll b, ll &x, ll &y)
{
if(!b)
{
x = 1;
y = 0;//無關變量取0方便計算,求模之後無影響
return a;
}
ll r = Extended_Euclid(b, a%b, x, y);
ll t = x;
x = y;
y = t - a/b*y;
return r;
}
ll Modular_Linear_Equation(ll a, ll b, ll n)
{
ll x, y, e;
ll d = Extended_Euclid(a, n, x, y);
if(b % d) return -1;
e = x*b/d % n + n;//轉化為正數,要先取模再加
return e % (n/d);//***
}
int main()
{
ll a,b,c,ans;
int k;
while(scanf("%lld %lld %lld %d",&a,&b,&c,&k) && (a+b+c+k))
{
ans = Modular_Linear_Equation(c, b-a, ((ll)1)<<k);
if(ans == -1)
puts("FOREVER");
else
printf("%lld\n",ans);
}
}