題目:
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.
For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
解答:
想一想,當 n = 13 時答案其實是 n = 9 時答案 + 1 的和;n = 12 時答案其實是 n = 8 時答案+ 1 的和,n = 8 時答案其實是 n = 4 時答案 + 1 的和。
這樣,就是明顯的動態規劃了。當 n = i * i 時,返回值為 1;其余情況下,n 依次減去一個小於自身的平方數後求返回值,取所有返回值中最小值再 + 1。
class Solution {
public:
int numSquares(int n) {
int max = 1;
while ((max + 1) * (max + 1) <= n) max++;
int* dp = new int[n + 1];
for(int i = 1; i <= max; i++) dp[i * i] = 1;
int tmp;
for(int i = 1; i < max; i++) {
for(int j = i * i + 1; j < (i+1)*(i+1); j++) {
int min = n;
for(int k = i; k >= 1; k--) {
min = min > (1 + dp[j - k*k]) ? (1 + dp[j - k*k]) : min;
}
dp[j] = min;
}
}
for(int j = max * max + 1; j <= n; j++) {
int min = n;
for(int k = max; k >= 1; k--) {
min = min > (1 + dp[j - k*k]) ? (1 + dp[j - k*k]) : min;
}
dp[j] = min;
}
return dp[n];
}
};
但其實,這道題擁有解析解:
根據 Lagrange's four-square theorem,自然數被最少的平方數組合的可能解只會是 1,2,3,4 其中之一。
解 = 1 比較易懂,開方即可;解 = 2, 3, 4 就要依靠 Legendre's three-square theorem 來判斷了。
class Solution
{
private:
int is_square(int n)
{
int sqrt_n = (int)(sqrt(n));
return (sqrt_n*sqrt_n == n);
}
public:
// Based on Lagrange's Four Square theorem, there
// are only 4 possible results: 1, 2, 3, 4.
int numSquares(int n)
{
// If n is a perfect square, return 1.
if(is_square(n))
{
return 1;
}
// The result is 4 if n can be written in the
// form of 4^k*(8*m + 7). Please refer to
// Legendre's three-square theorem.
while (n%4 == 0) // n%4 == 0
n >>= 2;
if (n%8 == 7) // n%8 == 7
return 4;
// Check whether 2 is the result.
int sqrt_n = (int)(sqrt(n));
for(int i = 1; i <= sqrt_n; i++)
{
if (is_square(n - i*i))
{
return 2;
}
}
return 3;
}
};