Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.
Nodes are labeled uniquely.
We use# as a separator for each node, and , as a separator for node label and each neighbor of the node.
As an example, consider the serialized graph {0,1,2#1,2#2,2}.
The graph has a total of three nodes, and therefore contains three parts as separated by #.
0. Connect node 0 to both nodes 1 and 2.1. Connect node 1 to node 2.2. Connect node 2 to node 2 (itself), thus forming a self-cycle.
Visually, the graph looks like the following:
1
/ \
/ \
0 --- 2
/ \
\_/
給出一個無向連通圖,要求復制
基本思路:
對圖的遍歷,采取廣度優先或者深度優先。
遍歷時,需要記住已訪問的結點。避免重復訪問。這功能可以和下面的map重用。
另外需要一個map, 映射,當前節點,和其對應的復制節點。
訪問每一個節點時,需要復制其鄰接邊。對題目來講,就是復制其 neighbours數組。
當邊所引用的節點不存在時,需要創建此結點。
以下深度優先實現方式。在leetcode上實際執行時間為 72ms。
/**
* Definition for undirected graph.
* struct UndirectedGraphNode {
* int label;
* vector neighbors;
* UndirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
if (!node) return node;
stack s;
unordered_map m;
s.push(node);
auto root = new UndirectedGraphNode(node->label);
m[node] = root;
while (!s.empty()) {
node = s.top();
s.pop();
auto node_copy = m[node];
for (auto neighbor: node->neighbors) {
auto © = m[neighbor];
if (!copy) {
s.push(neighbor);
copy = new UndirectedGraphNode(neighbor->label);
}
node_copy->neighbors.push_back(copy);
}
}
return root;
}
};
即將上面算法的stack換成了queue。
class Solution {
public:
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
if (!node) return node;
queue q;
unordered_map m;
q.push(node);
auto root_copy = new UndirectedGraphNode(node->label);
m[node] = root_copy;
while (!q.empty()) {
node = q.front();
q.pop();
auto node_copy = m[node];
for (auto neighbor: node->neighbors) {
auto © = m[neighbor];
if (!copy) {
q.push(neighbor);
copy = new UndirectedGraphNode(neighbor->label);
}
node_copy->neighbors.push_back(copy);
}
}
return root_copy;
}
};