基於C++完成kinect+opencv 獲得深度及黑色數據。本站提示廣大學習愛好者:(基於C++完成kinect+opencv 獲得深度及黑色數據)文章只能為提供參考,不一定能成為您想要的結果。以下是基於C++完成kinect+opencv 獲得深度及黑色數據正文
開辟情況 vs2010+OPENCV2.4.10
起首,下載最新的Kinect 2 SDK http://www.microsoft.com/en-us/kinectforwindows/develop/downloads-docs.aspx
下載以後不要拔出Kinect,最好也不消拔出除鍵盤鼠標之外的其它USB裝備,然後裝置SDK,裝置完成以後拔出Kinect,會有裝置新裝備的提醒。裝置完成以後可以去“開端”那邊找到兩個新裝置的軟件,一個是可以顯示Kinect深度圖,別的一個軟件展現SDK中的各類例子法式。
進入SDK的裝置目次,可以找到sample這個文件夾,外面是四種說話編寫的例子,個中native是C++的,managed是C#的,還有別的兩種說話不熟習,我就熟習C++,橫豎只是嘗嘗的,就用C++了。
opencv+kinect .cpp
#include <opencv2\opencv.hpp>
#include<iostream>
//windows的頭文件,必需要,否則NuiApi.h用不了
#include <Windows.h>
//Kinect for windows 的頭文件
#include "NuiApi.h"
using namespace std;
using namespace cv;
#include <d3d11.h>
//最遠間隔(mm)
const int MAX_DISTANCE = 3500;
//比來間隔(mm)
const int MIN_DISTANCE = 200;
const LONG m_depthWidth = 640;
const LONG m_depthHeight = 480;
const LONG m_colorWidth = 640;
const LONG m_colorHeight = 480;
const LONG cBytesPerPixel = 4;
int main()
{
//黑色圖象
Mat image_rgb;
//深度圖象
Mat image_depth;
//創立一個MAT
image_rgb.create(480,640,CV_8UC3);
image_depth.create(480,640,CV_8UC1);
//一個KINECT實例指針
INuiSensor* m_pNuiSensor = NULL;
if (m_pNuiSensor != NULL)
{
return 0;
}
//記載以後銜接KINECT的數目(為多銜接做預備)
int iSensorCount;
//取得以後KINECT的數目
HRESULT hr = NuiGetSensorCount(&iSensorCount);
//依照序列初始化KINETC實例,這裡就銜接了一個KINECT,所以沒有效到輪回
hr = NuiCreateSensorByIndex(iSensorCount - 1, &m_pNuiSensor);
//初始化,讓其可以吸收黑色和深度數據流
hr = m_pNuiSensor->NuiInitialize(NUI_INITIALIZE_FLAG_USES_COLOR | NUI_INITIALIZE_FLAG_USES_DEPTH);
//斷定能否失足
if (FAILED(hr))
{
cout<<"NuiInitialize failed"<<endl;
return hr;
}
//黑色圖象獲得下一幀事宜
HANDLE nextColorFrameEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
//黑色圖象事宜句柄
HANDLE colorStreamHandle = NULL;
//深度圖象獲得下一幀事宜
HANDLE nextDepthFrameEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
//深度圖象事宜句柄
HANDLE depthStreamHandle = NULL;
//實例翻開數據流,這裡NUI_IMAGE_TYPE_COLOR表現黑色圖象
hr = m_pNuiSensor->NuiImageStreamOpen(NUI_IMAGE_TYPE_COLOR, NUI_IMAGE_RESOLUTION_640x480, 0,2,nextColorFrameEvent,&colorStreamHandle);
if( FAILED( hr ) )//斷定能否提取准確
{
cout<<"Could not open color image stream video"<<endl;
m_pNuiSensor->NuiShutdown();
return hr;
}
//實例翻開數據流,這裡NUI_IMAGE_TYPE_DEPTH表現深度圖象
hr = m_pNuiSensor->NuiImageStreamOpen(NUI_IMAGE_TYPE_DEPTH, NUI_IMAGE_RESOLUTION_640x480, 0,2, nextDepthFrameEvent, &depthStreamHandle);
if( FAILED( hr ) )//斷定能否提取准確
{
cout<<"Could not open color image stream video"<<endl;
m_pNuiSensor->NuiShutdown();
return hr;
}
cv::namedWindow("depth", CV_WINDOW_AUTOSIZE);
moveWindow("depth",300,600);
cv::namedWindow("colorImage",CV_WINDOW_AUTOSIZE);
moveWindow("colorImage",0,200);
while (1)
{
NUI_IMAGE_FRAME pImageFrame_rgb;
NUI_IMAGE_FRAME pImageFrame_depth;
//無窮期待新的黑色數據,比及後前往
if (WaitForSingleObject(nextColorFrameEvent, 0) == 0)
{
//從適才翻開數據流的流句柄中獲得該幀數據,讀取到的數據地址存於pImageFrame
hr = m_pNuiSensor->NuiImageStreamGetNextFrame(colorStreamHandle, 0, &pImageFrame_rgb);
if (FAILED(hr))
{
cout<<"Could not get color image"<<endl;
m_pNuiSensor->NuiShutdown();
return -1;
}
INuiFrameTexture *pTexture = pImageFrame_rgb.pFrameTexture;
NUI_LOCKED_RECT lockedRect;
//提取數據幀到LockedRect,它包含兩個數據對象:pitch每行字節數,pBits第一個字節地址
//並鎖定命據,如許當我們讀數據的時刻,kinect就不會去修正它
pTexture->LockRect(0, &lockedRect, NULL, 0);
//確認取得的數據能否有用
if (lockedRect.Pitch != 0)
{
//將數據轉換為OpenCV的Mat格局
for (int i = 0; i < image_rgb.rows; i++)
{
//第i行的指針
uchar *prt = image_rgb.ptr(i);
//每一個字節代表一個色彩信息,直接應用uchar
uchar *pBuffer = (uchar*)(lockedRect.pBits) + i * lockedRect.Pitch;
for (int j = 0; j < image_rgb.cols; j++)
{
prt[3 * j] = pBuffer[4 * j];//外部數據是4個字節,0-1-2是BGR,第4個如今未應用
prt[3 * j + 1] = pBuffer[4 * j + 1];
prt[3 * j + 2] = pBuffer[4 * j + 2];
}
}
imshow("colorImage",image_rgb);
//消除鎖定
pTexture->UnlockRect(0);
//釋放幀
m_pNuiSensor->NuiImageStreamReleaseFrame(colorStreamHandle, &pImageFrame_rgb );
}
else
{
cout<<"Buffer length of received texture is bogus\r\n"<<endl;
}
BOOL nearMode;
INuiFrameTexture* pColorToDepthTexture;
//深度圖象的處置
if (WaitForSingleObject(nextDepthFrameEvent, INFINITE) == 0)
{
hr = m_pNuiSensor->NuiImageStreamGetNextFrame(depthStreamHandle, 0 , &pImageFrame_depth);
if (FAILED(hr))
{
cout<<"Could not get color image"<<endl;
NuiShutdown();
return -1;
}
hr = m_pNuiSensor->NuiImageFrameGetDepthImagePixelFrameTexture(
depthStreamHandle, &pImageFrame_depth, &nearMode, &pColorToDepthTexture);
INuiFrameTexture *pTexture = pImageFrame_depth.pFrameTexture;
NUI_LOCKED_RECT lockedRect;
NUI_LOCKED_RECT ColorToDepthLockRect;
pTexture->LockRect(0, &lockedRect, NULL, 0);
pColorToDepthTexture->LockRect(0,&ColorToDepthLockRect,NULL,0);
//歸一化
for (int i = 0; i < image_depth.rows; i++)
{
uchar *prt = image_depth.ptr<uchar>(i);
uchar* pBuffer = (uchar*)(lockedRect.pBits) + i * lockedRect.Pitch;
//這裡須要轉換,由於每一個深度數據是2個字節,應將BYTE轉成USHORT
USHORT *pBufferRun = (USHORT*)pBuffer;
for (int j = 0; j < image_depth.cols; j++)
{
//先向,將數據歸一化處置,對深度間隔在300mm-3500mm規模內的像素,映照到【0—255】內,
//超越規模的,都去做是邊沿像素
if (pBufferRun[j] << 3 > MAX_DISTANCE) prt[j] = 255;
else if(pBufferRun[j] << 3 < MIN_DISTANCE) prt[j] = 0;
else prt[j] = (BYTE)(256 * (pBufferRun[j] << 3)/ MAX_DISTANCE);
}
}
imshow("depth", image_depth);
//接上去是對齊部門,將遠景摳出來
//寄存深度點的參數
NUI_DEPTH_IMAGE_POINT* depthPoints = new NUI_DEPTH_IMAGE_POINT[640 * 480];
if (ColorToDepthLockRect.Pitch != 0)
{
HRESULT hrState = S_OK;
//一個能在分歧空間坐標改變的類(包含:深度,黑色,骨骼)
INuiCoordinateMapper* pMapper;
//設置KINECT實例的空間坐標系
hrState = m_pNuiSensor->NuiGetCoordinateMapper(&pMapper);
if (FAILED(hrState))
{
return hrState;
}
//主要的一步:從色彩空間映照到深度空間。參數解釋:
//【參數1】:黑色圖象的類型
//【參數2】:黑色圖象的分辯率
//【參數3】:深度圖象的分辯率
//【參數4】:深度圖象的個數
//【參數5】:深度像素點數
//【參數6】:取內存的年夜小,個數。類型為NUI_DEPTH_IMAGE_PIXEL
//【參數7】:寄存映照成果點的參數
hrState = pMapper->MapColorFrameToDepthFrame(NUI_IMAGE_TYPE_COLOR, NUI_IMAGE_RESOLUTION_640x480, NUI_IMAGE_RESOLUTION_640x480,
640 * 480, (NUI_DEPTH_IMAGE_PIXEL*)ColorToDepthLockRect.pBits,640 * 480, depthPoints);
if (FAILED(hrState))
{
return hrState;
}
//顯示的圖象
Mat show;
show.create(480,640,CV_8UC3);
show = 0;
for (int i = 0; i < image_rgb.rows; i++)
{
for (int j = 0; j < image_rgb.cols; j++)
{
uchar *prt_rgb = image_rgb.ptr(i);
uchar *prt_show = show.ptr(i);
//在內存中偏移量
long index = i * 640 + j;
//從保留了映照坐標的數組中獲得點
NUI_DEPTH_IMAGE_POINT depthPointAtIndex = depthPoints[index];
//界限斷定
if (depthPointAtIndex.x >= 0 && depthPointAtIndex.x < image_depth.cols &&
depthPointAtIndex.y >=0 && depthPointAtIndex.y < image_depth.rows)
{
//深度斷定,在MIN_DISTANCE與MAX_DISTANCE之間確當成遠景,顯示出來
//這個應用也很主要,當應用真實的深度像素點再在深度圖象中獲得深度值來斷定的時刻,會失足
if (depthPointAtIndex.depth >= MIN_DISTANCE && depthPointAtIndex.depth <= MAX_DISTANCE)
{
prt_show[3 * j] = prt_rgb[j * 3];
prt_show[3 * j + 1] = prt_rgb[j * 3 + 1];
prt_show[3 * j + 2] = prt_rgb[j * 3 + 2];
}
}
}
}
imshow("show", show);
}
delete []depthPoints;
pTexture->UnlockRect(0);
m_pNuiSensor->NuiImageStreamReleaseFrame(depthStreamHandle, &pImageFrame_depth);
}
else
{
cout<<"Buffer length of received texture is bogus\r\n"<<endl;
}
}
if (cvWaitKey(20) == 27)
break;
}
return 0;
}