深刻分析設計形式中的組合形式運用及在C++中的完成。本站提示廣大學習愛好者:(深刻分析設計形式中的組合形式運用及在C++中的完成)文章只能為提供參考,不一定能成為您想要的結果。以下是深刻分析設計形式中的組合形式運用及在C++中的完成正文
組合形式將對象組分解樹形構造以表現“部門-全體”的條理構造。C o m p o s i t e 使得用戶對單個對象和組合對象的應用具有分歧性。
形式圖:
實用場景:
舉例:
namespace FactoryMethod_DesignPattern
{
using System;
using System.Collections;
abstract class Component
{
protected string strName;
public Component(string name)
{
strName = name;
}
abstract public void Add(Component c);
public abstract void DumpContents();
// other operations for delete, get, etc.
}
class Composite : Component
{
private ArrayList ComponentList = new ArrayList();
public Composite(string s) : base(s) {}
override public void Add(Component c)
{
ComponentList.Add(c);
}
public override void DumpContents()
{
// First dump the name of this composite node
Console.WriteLine("Node: {0}", strName);
// Then loop through children, and get then to dump their contents
foreach (Component c in ComponentList)
{
c.DumpContents();
}
}
}
class Leaf : Component
{
public Leaf(string s) : base(s) {}
override public void Add(Component c)
{
Console.WriteLine("Cannot add to a leaf");
}
public override void DumpContents()
{
Console.WriteLine("Node: {0}", strName);
}
}
/// <summary>
/// Summary description for Client.
/// </summary>
public class Client
{
Component SetupTree()
{
// here we have to create a tree structure,
// consisting of composites and leafs.
Composite root = new Composite("root-composite");
Composite parentcomposite;
Composite composite;
Leaf leaf;
parentcomposite = root;
composite = new Composite("first level - first sibling - composite");
parentcomposite.Add(composite);
leaf = new Leaf("first level - second sibling - leaf");
parentcomposite.Add(leaf);
parentcomposite = composite;
composite = new Composite("second level - first sibling - composite");
parentcomposite.Add(composite);
composite = new Composite("second level - second sibling - composite");
parentcomposite.Add(composite);
// we will leaf the second level - first sibling empty, and start
// populating the second level - second sibling
parentcomposite = composite;
leaf = new Leaf("third level - first sibling - leaf");
parentcomposite.Add(leaf);
leaf = new Leaf("third level - second sibling - leaf");
parentcomposite.Add(leaf);
composite = new Composite("third level - third sibling - composite");
parentcomposite.Add(composite);
return root;
}
public static int Main(string[] args)
{
Component component;
Client c = new Client();
component = c.SetupTree();
component.DumpContents();
return 0;
}
}
}
可以看出,Composite類型的對象可以包括其它Component類型的對象。換而言之,Composite類型對象可以含有其它的樹枝(Composite)類型或樹葉(Leaf)類型的對象。
分解形式的完成依據所完成接口的差別分為兩種情勢,分離稱為平安形式和通明形式。分解形式可以不供給父對象的治理辦法,但分解形式必需在適合的處所供給子對象的治理辦法(諸如:add、remove、getChild等)。
通明方法
作為第一種選擇,在Component外面聲明一切的用來治理子類對象的辦法,包含add()、remove(),和getChild()辦法。如許做的利益是一切的構件類都有雷同的接口。在客戶端看來,樹葉類對象與分解類對象的差別最少在接口條理上消逝了,客戶端可以一致同的看待一切的對象。這就是通明情勢的分解形式。
這個選擇的缺陷是不敷平安,由於樹葉類對象和分解類對象在實質上是有差別的。樹葉類對象弗成能有下一個條理的對象,是以add()、remove()和getChild()辦法沒成心義,是在編譯時代不會失足,而只會在運轉時代才會失足。
平安方法
第二種選擇是在Composite類外面聲明一切的用來治理子類對象的辦法。如許的做法是平安的做法,由於樹葉類型的對象基本就沒有治理子類對象的辦法,是以,假如客戶端對樹葉類對象應用這些辦法時,法式會在編譯時代失足。
這個選擇的缺陷是不敷通明,由於樹葉類和分解類將具有分歧的接口。
這兩個情勢各有優缺陷,須要依據軟件的詳細情形做出棄取決議。
平安式的分解形式完成: 只要composite有Add ,remove,delete等辦法.
以下示例性代碼演示了平安式的分解形式代碼:
// Composite pattern -- Structural example
using System;
using System.Text;
using System.Collections;
// "Component"
abstract class Component
{
// Fields
protected string name;
// Constructors
public Component( string name )
{
this.name = name;
}
// Operation
public abstract void Display( int depth );
}
// "Composite"
class Composite : Component
{
// Fields
private ArrayList children = new ArrayList();
// Constructors
public Composite( string name ) : base( name ) {}
// Methods
public void Add( Component component )
{
children.Add( component );
}
public void Remove( Component component )
{
children.Remove( component );
}
public override void Display( int depth )
{
Console.WriteLine( new String( '-', depth ) + name );
// Display each of the node's children
foreach( Component component in children )
component.Display( depth + 2 );
}
}
// "Leaf"
class Leaf : Component
{
// Constructors
public Leaf( string name ) : base( name ) {}
// Methods
public override void Display( int depth )
{
Console.WriteLine( new String( '-', depth ) + name );
}
}
/// <summary>
/// Client test
/// </summary>
public class Client
{
public static void Main( string[] args )
{
// Create a tree structure
Composite root = new Composite( "root" );
root.Add( new Leaf( "Leaf A" ));
root.Add( new Leaf( "Leaf B" ));
Composite comp = new Composite( "Composite X" );
comp.Add( new Leaf( "Leaf XA" ) );
comp.Add( new Leaf( "Leaf XB" ) );
root.Add( comp );
root.Add( new Leaf( "Leaf C" ));
// Add and remove a leaf
Leaf l = new Leaf( "Leaf D" );
root.Add( l );
root.Remove( l );
// Recursively display nodes
root.Display( 1 );
}
}
通明式的分解形式完成: 每一個裡都有add,remove等修正辦法.
以下示例性代碼演示了平安式的分解形式代碼:
// Composite pattern -- Structural example
using System;
using System.Text;
using System.Collections;
// "Component"
abstract class Component
{
// Fields
protected string name;
// Constructors
public Component( string name )
{ this.name = name; }
// Methods
abstract public void Add(Component c);
abstract public void Remove( Component c );
abstract public void Display( int depth );
}
// "Composite"
class Composite : Component
{
// Fields
private ArrayList children = new ArrayList();
// Constructors
public Composite( string name ) : base( name ) {}
// Methods
public override void Add( Component component )
{ children.Add( component ); }
public override void Remove( Component component )
{ children.Remove( component ); }
public override void Display( int depth )
{
Console.WriteLine( new String( '-', depth ) + name );
// Display each of the node's children
foreach( Component component in children )
component.Display( depth + 2 );
}
}
// "Leaf"
class Leaf : Component
{
// Constructors
public Leaf( string name ) : base( name ) {}
// Methods
public override void Add( Component c )
{ Console.WriteLine("Cannot add to a leaf"); }
public override void Remove( Component c )
{ Console.WriteLine("Cannot remove from a leaf"); }
public override void Display( int depth )
{ Console.WriteLine( new String( '-', depth ) + name ); }
}
/// <summary>
/// Client test
/// </summary>
public class Client
{
public static void Main( string[] args )
{
// Create a tree structure
Composite root = new Composite( "root" );
root.Add( new Leaf( "Leaf A" ));
root.Add( new Leaf( "Leaf B" ));
Composite comp = new Composite( "Composite X" );
comp.Add( new Leaf( "Leaf XA" ) );
comp.Add( new Leaf( "Leaf XB" ) );
root.Add( comp );
root.Add( new Leaf( "Leaf C" ));
// Add and remove a leaf
Leaf l = new Leaf( "Leaf D" );
root.Add( l );
root.Remove( l );
// Recursively display nodes
root.Display( 1 );
}
}
實例
再看看一個完全些的例子:
#include <iostream>
#include <string>
#include <list>
using namespace std;
class Component
{
protected:
string name;
public:
Component(string name)
:name(name)
{ }
virtual void AddComponent(Component *component) { }
virtual void RemoveComponent(Component *component) { }
virtual void GetChild(int depth) { }
};
class Leaf: public Component
{
public:
Leaf(string name)
:Component(name)
{ }
void AddComponent(Component *component)
{
cout<<"Leaf can't add component"<<endl;
}
void RemoveComponent(Component *component)
{
cout<<"Leaf can't remove component"<<endl;
}
void GetChild(int depth)
{
string _tmpstring(depth, '-');
cout<<_tmpstring<<name<<endl;
}
};
class Composite:public Component
{
private:
list<Component*> _componets;
public:
Composite(string name)
:Component(name)
{ }
void AddComponent(Component *component)
{
_componets.push_back(component);
}
void RemoveComponent(Component *component)
{
_componets.remove(component);
}
void GetChild(int depth)
{
string tmpstring (depth, '-');
cout<<tmpstring<<name<<endl;
list<Component*>::iterator iter = _componets.begin();
for(; iter != _componets.end(); iter++)
{
(*iter)->GetChild(depth + 2);
}
}
};
int main()
{
Composite *root = new Composite("root");
Leaf *leaf1 = new Leaf("leaf1");
Leaf *leaf2 = new Leaf("leaf2");
root->AddComponent(leaf1);
root->AddComponent(leaf2);
Composite *lay2 = new Composite("layer2");
Leaf *leaf4 = new Leaf("leaf4");
lay2->AddComponent(leaf4);
Composite *lay1 = new Composite("layer1");
Leaf *leaf3 = new Leaf("leaf3");
lay1->AddComponent(leaf3);
lay1->AddComponent(lay2);
root->AddComponent(lay1);
root->GetChild(1);
cout<<endl;
lay1->GetChild(1);
cout<<endl;
lay2->GetChild(1);
delete root;
delete lay1;
delete lay2;
delete leaf1;
delete leaf2;
delete leaf3;
delete leaf4;
system("pause");
return 0;
}
輸入: