C#盤算矩陣的逆矩陣辦法實例剖析。本站提示廣大學習愛好者:(C#盤算矩陣的逆矩陣辦法實例剖析)文章只能為提供參考,不一定能成為您想要的結果。以下是C#盤算矩陣的逆矩陣辦法實例剖析正文
本文實例講述了C#盤算矩陣的逆矩陣辦法。分享給年夜家供年夜家參考。詳細以下:
1.代碼思緒
1)對矩陣停止正當性檢討:矩陣必需為方陣
2)盤算矩陣行列式的值(Determinant函數)
3)只要滿秩矩陣才有逆矩陣,是以假如行列式的值為0(在代碼中以相對值小於1E-6做斷定),則終止函數,報出異常
4)求出隨同矩陣(AdjointMatrix函數)
5)逆矩陣各元素即其隨同矩陣各元素除以矩陣行列式的商
2.函數代碼
(注:本段代碼只完成了一個思緒,能夠其實不是該成績的最優解)
/// <summary>
/// 求矩陣的逆矩陣
/// </summary>
/// <param name="matrix"></param>
/// <returns></returns>
public static double[][] InverseMatrix(double[][] matrix)
{
//matrix必需為非空
if (matrix == null || matrix.Length == 0)
{
return new double[][] { };
}
//matrix 必需為方陣
int len = matrix.Length;
for (int counter = 0; counter < matrix.Length; counter++)
{
if (matrix[counter].Length != len)
{
throw new Exception("matrix 必需為方陣");
}
}
//盤算矩陣行列式的值
double dDeterminant = Determinant(matrix);
if (Math.Abs(dDeterminant) <= 1E-6)
{
throw new Exception("矩陣弗成逆");
}
//制造一個隨同矩陣年夜小的矩陣
double[][] result = AdjointMatrix(matrix);
//矩陣的每項除以矩陣行列式的值,即為所求
for (int i = 0; i < matrix.Length; i++)
{
for (int j = 0; j < matrix.Length; j++)
{
result[i][j] = result[i][j] / dDeterminant;
}
}
return result;
}
/// <summary>
/// 遞歸盤算行列式的值
/// </summary>
/// <param name="matrix">矩陣</param>
/// <returns></returns>
public static double Determinant(double[][] matrix)
{
//二階及以下行列式直接盤算
if (matrix.Length == 0) return 0;
else if (matrix.Length == 1) return matrix[0][0];
else if (matrix.Length == 2)
{
return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
}
//對第一行應用“加邊法”遞歸盤算行列式的值
double dSum = 0, dSign = 1;
for (int i = 0; i < matrix.Length; i++)
{
double[][] matrixTemp = new double[matrix.Length - 1][];
for (int count = 0; count < matrix.Length - 1; count++)
{
matrixTemp[count] = new double[matrix.Length - 1];
}
for (int j = 0; j < matrixTemp.Length; j++)
{
for (int k = 0; k < matrixTemp.Length; k++)
{
matrixTemp[j][k] = matrix[j + 1][k >= i ? k + 1 : k];
}
}
dSum += (matrix[0][i] * dSign * Determinant(matrixTemp));
dSign = dSign * -1;
}
return dSum;
}
/// <summary>
/// 盤算方陣的隨同矩陣
/// </summary>
/// <param name="matrix">方陣</param>
/// <returns></returns>
public static double[][] AdjointMatrix(double [][] matrix)
{
//制造一個隨同矩陣年夜小的矩陣
double[][] result = new double[matrix.Length][];
for (int i = 0; i < result.Length; i++)
{
result[i] = new double[matrix[i].Length];
}
//生成隨同矩陣
for (int i = 0; i < result.Length; i++)
{
for (int j = 0; j < result.Length; j++)
{
//存儲代數余子式的矩陣(行、列數都比原矩陣少1)
double[][] temp = new double[result.Length - 1][];
for (int k = 0; k < result.Length - 1; k++)
{
temp[k] = new double[result[k].Length - 1];
}
//生成代數余子式
for (int x = 0; x < temp.Length; x++)
{
for (int y = 0; y < temp.Length; y++)
{
temp[x][y] = matrix[x < i ? x : x + 1][y < j ? y : y + 1];
}
}
//Console.WriteLine("代數余子式:");
//PrintMatrix(temp);
result[j][i] = ((i + j) % 2 == 0 ? 1 : -1) * Determinant(temp);
}
}
//Console.WriteLine("隨同矩陣:");
//PrintMatrix(result);
return result;
}
/// <summary>
/// 打印矩陣
/// </summary>
/// <param name="matrix">待打印矩陣</param>
private static void PrintMatrix(double[][] matrix, string title = "")
{
//1.題目值為空則不顯示題目
if (!String.IsNullOrWhiteSpace(title))
{
Console.WriteLine(title);
}
//2.打印矩陣
for (int i = 0; i < matrix.Length; i++)
{
for (int j = 0; j < matrix[i].Length; j++)
{
Console.Write(matrix[i][j] + "\t");
//留意不克不及寫為:Console.Write(matrix[i][j] + '\t');
}
Console.WriteLine();
}
//3.空行
Console.WriteLine();
}
3.Main函數挪用
static void Main(string[] args)
{
double[][] matrix = new double[][]
{
new double[] { 1, 2, 3 },
new double[] { 2, 2, 1 },
new double[] { 3, 4, 3 }
};
PrintMatrix(matrix, "原矩陣");
PrintMatrix(AdjointMatrix(matrix), "隨同矩陣");
Console.WriteLine("行列式的值為:" + Determinant(matrix) + '\n');
PrintMatrix(InverseMatrix(matrix), "逆矩陣");
Console.ReadLine();
}
4.履行成果

願望本文所述對年夜家的C#法式設計有所贊助。