C#直線的最小二乘法線性回歸運算實例。本站提示廣大學習愛好者:(C#直線的最小二乘法線性回歸運算實例)文章只能為提供參考,不一定能成為您想要的結果。以下是C#直線的最小二乘法線性回歸運算實例正文
本文實例講述了C#直線的最小二乘法線性回歸運算辦法。分享給年夜家供年夜家參考。詳細以下:
1.Point構造
在編寫C#窗體運用法式時,由於援用了System.Drawing定名空間,個中自帶了Point構造,本文中的例子是一個掌握台運用法式,是以本身制造了一個Point構造
/// <summary>
/// 二維笛卡爾坐標系坐標
/// </summary>
public struct Point
{
public double X;
public double Y;
public Point(double x = 0, double y = 0)
{
X = x;
Y = y;
}
}
2.線性回歸
/// <summary>
/// 對一組點經由過程最小二乘法停止線性回歸
/// </summary>
/// <param name="parray"></param>
public static void LinearRegression(Point[] parray)
{
//點數不克不及小於2
if (parray.Length < 2)
{
Console.WriteLine("點的數目小於2,沒法停止線性回歸");
return;
}
//求出橫縱坐標的均勻值
double averagex = 0, averagey = 0;
foreach (Point p in parray)
{
averagex += p.X;
averagey += p.Y;
}
averagex /= parray.Length;
averagey /= parray.Length;
//經歷回歸系數的份子與分母
double numerator = 0;
double denominator = 0;
foreach (Point p in parray)
{
numerator += (p.X - averagex) * (p.Y - averagey);
denominator += (p.X - averagex) * (p.X - averagex);
}
//回歸系數b(Regression Coefficient)
double RCB = numerator / denominator;
//回歸系數a
double RCA = averagey - RCB * averagex;
Console.WriteLine("回歸系數A: " + RCA.ToString("0.0000"));
Console.WriteLine("回歸系數B: " + RCB.ToString("0.0000"));
Console.WriteLine(string.Format("方程為: y = {0} + {1} * x",
RCA.ToString("0.0000"), RCB.ToString("0.0000")));
//殘剩平方和與回歸平方和
double residualSS = 0; //(Residual Sum of Squares)
double regressionSS = 0; //(Regression Sum of Squares)
foreach (Point p in parray)
{
residualSS +=
(p.Y - RCA - RCB * p.X) *
(p.Y - RCA - RCB * p.X);
regressionSS +=
(RCA + RCB * p.X - averagey) *
(RCA + RCB * p.X - averagey);
}
Console.WriteLine("殘剩平方和: " + residualSS.ToString("0.0000"));
Console.WriteLine("回歸平方和: " + regressionSS.ToString("0.0000"));
}
3.Main函數挪用
static void Main(string[] args)
{
//設置一個包括9個點的數組
Point[] array = new Point[9];
array[0] = new Point(0, 66.7);
array[1] = new Point(4, 71.0);
array[2] = new Point(10, 76.3);
array[3] = new Point(15, 80.6);
array[4] = new Point(21, 85.7);
array[5] = new Point(29, 92.9);
array[6] = new Point(36, 99.4);
array[7] = new Point(51, 113.6);
array[8] = new Point(68, 125.1);
LinearRegression(array);
Console.Read();
}
4.運轉成果

願望本文所述對年夜家的C#法式設計有所贊助。