be based on Python Bayesian optimization XGBoost The operation of algorithm parameter adjustment is as follows :
Report the following error :
Traceback (most recent call last):
......
suggestion = acq_max(
File "/usr/local/python3/lib/python3.8/site-packages/bayes_opt/util.py", line 65, in acq_max
if max_acq is None or -res.fun[0] >= max_acq:
TypeError: 'float' object is not subscriptable
Reference key codes are as follows :
def _xgb_logistic_evaluate(max_depth, subsample, gamma, colsample_bytree, min_child_weight):
import xgboost as xgb
params = {
'objective': 'binary:logistic', # The problem of logistic regression dichotomy
'eval_metric': 'auc',
'max_depth': int(max_depth),
'subsample': subsample, # 0.8
'eta': 0.3,
'gamma': gamma,
'colsample_bytree': colsample_bytree,
'min_child_weight': min_child_weight}
cv_result = xgb.cv(params, self.dtrain,
num_boost_round=30, nfold=5)
return 1.0 * cv_result['test-auc-mean'].iloc[-1]
def evaluate(self, bo_f, pbounds, init_points, n_iter):
bo = BayesianOptimization(
f=bo_f, # Objective function
pbounds=pbounds, # Value space
verbose=2, # verbose = 2 Print all when ,verbose = 1 Print the maximum value found in the run ,verbose = 0 Will print nothing
random_state=1,
)
bo.maximize(init_points=init_points, # Number of steps of random search
n_iter=n_iter, # Number of Bayesian Optimization iterations performed
acq='ei')
print(bo.max)
res = bo.max
params_max = res['params']
return params_max
Reference resources stackoverflow Explanation above :
This is related to a change in scipy 1.8.0, One should use -np.squeeze(res.fun) instead of -res.fun[0]
https://github.com/fmfn/BayesianOptimization/issues/300
The comments in the bug report indicate reverting to scipy 1.7.0 fixes this,
UPDATED: It seems the fix has been merged in the BayesianOptimization package, but the new maintainer is unable to push a release to pypi https://github.com/fmfn/BayesianOptimization/issues/300#issuecomment-1146903850
therefore , Uninstall current scipy 1.8.1, Return to scipy 1.7.0.
[[email protected] bin]# pip3 uninstall scipy
......
Successfully uninstalled scipy-1.8.1
[[email protected] bin]# pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple scipy==1.7
Successfully installed scipy-1.7.0
Successfully run the Bayesian optimization parameter adjuster again .
Reference resources :
seul233. python When using Bayesian to optimize random forest TypeError: ‘float’ object is not subscriptable. CSDN Blog . 2022.03
https://stackoverflow.com/questions/71460894/bayesianoptimization-fails-due-to-float-error
subject Use python Write a sc
No7Chapitre Contrôle du cadre(