1、線程池的處理流程(execute方法)
當向線程池提交一個任務後,其經歷的流程如下:
1)、如果當前線程數小於核心線程數(corePoolSize),則創建新線程來執行該任務;
2)、如果當前線程數不小於,即等於或大於核心線程數(corePoolSize),則將任務添加到阻塞隊列(BlockingQueue)中;
3)、如果阻塞隊列中的任務已滿,且此時線程數小於最大線程數(maximumPoolSize)時,則創建新線程來執行該任務;
4)、執行對應的任務策略,一般是拒絕任務,拋出異常。
2、任務策略:
1)、拋出異常
ThreadPoolExecutor.AbortPolicy()
2)、丟棄當前的任務
ThreadPoolExecutor.DiscardPolicy()
3)、丟棄老的任務
ThreadPoolExecutor.DiscardOldestPolicy()
4)、重試添加當前的任務
ThreadPoolExecutor.CallerRunsPolicy()
3、線程池源碼分析
1)、若干變量
//將工作線程數和線程池狀態放在一個int類型變量中存儲而設置的一個原子類型的變量
//故在ctl中,低29位是用於表示工作線程數,高位用於表示線程池狀態,如RUNNING、SHUTDOWN等。
//故一個線程池中最多有工作線程的個數為(2^29) - 1
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
//低29位
private static final int COUNT_BITS = Integer.SIZE - 3;
//線程池中最大的工作線程數
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
//線程池狀態,用高3位表示
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
//獲取當前線程池的狀態
private static int runStateOf(int c) { return c & ~CAPACITY; }
//獲取當前線程池中的工作線程數
private static int workerCountOf(int c) { return c & CAPACITY; }
//組合當前線程池狀態和工作線程數為一個int類型的變量
private static int ctlOf(int rs, int wc) { return rs | wc; }
2)、execute()方法
public void execute(Runnable command) {
//當提交的任務為null時,則拋出空指針異常
if (command == null)
throw new NullPointerException();
//獲取當前線程池用於記錄狀態和工作線程數的變量
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
//檢測當前線程池中的工作線程數小於核心線程數時,則直接創建新線程,執行任務
if (addWorker(command, true))
return;
//當創建新線程失敗時,需要重新獲取用於記錄狀態和工作線程數的變量
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
//當前線程池是運行狀態,且將任務添加到阻塞隊列中成功時
//再次獲取用於記錄狀態和工作線程數的變量
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
//當前線程池不是運行狀態,且刪除成功時,使用任務策略
reject(command);
else if (workerCountOf(recheck) == 0)
//當前工作線程數為0時,直接添加空任務
addWorker(null, false);
}
else if (!addWorker(command, false))
//阻塞隊列已滿且當前工作線程數小於最大線程數時,則直接創建線程,執行任務
//若還失敗,則直接使用任務策略
reject(command);
}
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
//獲取當前線程池的狀態
int rs = runStateOf(c);
//檢測當前線程池是否處於關閉狀態
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
//獲取當前線程池的工作線程數
int wc = workerCountOf(c);
//如果超過了限制,則返回false
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//通過CAS增加一個工作線程
if (compareAndIncrementWorkerCount(c))
break retry;
//再次獲取用於標記線程池狀態和記錄工作線程數的變量,並比對當前狀態是否一直,若不是,則繼續外環循環,否則繼續內環循環
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
//新建一個工作線程
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
mainLock.lock();
//加鎖
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int c = ctl.get();
int rs = runStateOf(c);
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
//將工作線程添加到線程集合Set中
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
//工作線程開始啟動,執行提交的任務
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
//工作線程的構造方法
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
//線程執行體
/** Delegates main run loop to outer runWorker */
public void run() {
//調用父類的runWorker方法
runWorker(this);
}
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
//不斷的從任務隊列中獲取任務,並執行
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
//線程是否中斷關閉
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
//任務執行前的執行方法
beforeExecute(wt, task);
Throwable thrown = null;
try {
//執行任務
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
//任務執行或的執行方法
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
//調用該方法後,該線程池不會再接受新任務,當已經存在的任務執行完畢後,線程池就會關閉
void shutdown()
//調用該方法後,該線程池會嘗試關閉現有的線程,直到所有的線程都關閉,線程池就會關閉
List<Runnable> shutdownNow()
4、常用的線程池
1)、固定大小線程的線程池 newFixedThreadPool
2)、單一線程的線程池,當線程發生異常結束時,則會另外創建一個新的線程,以保持線程池自始至終只有一個線程 newSingleThreadExecutor
3)、無限制線程數的線程池,當空閒線程超過空閒時間時(默認1分鐘),線程會被回收 newCachedThreadPool
5、阻塞隊列
//往隊列中添加元素,成功返回true,失敗拋出異常
boolean add(E e)
//往隊列中添加元素,成功返回true,失敗返回false
boolean offer(E e)
//往隊列中添加元素,在指定的時間內若是添加不了,則返回false,否則返回true
boolean offer(E e, long timeout, TimeUnit unit)
//有阻塞的添加元素,即肯定能將元素添加到隊列中,但是可能一直被阻塞
void put(E e) throws InterruptedException
//獲取隊列中的首元素,沒有返回null
E poll()
//獲取隊列中的首元素,在指定的時間內若是獲取不到,則返回null
E poll(long timeout, TimeUnit unit)
//獲取隊列中的首元素,當隊列中沒有元素時,則一直阻塞,直到有元素時,才返回首元素
E take()