Catch That Cow
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 36079 Accepted: 11123
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17Sample Output
4Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
完全是BFS,沒有什麼技巧,主要還是用VISIT標記,防重搜
#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
struct tree{int x;int step;} queue[800050];
int visit[100050];
int n,k;
int bfs()
{
int t,w,temp,minx=10000000,xx;
t=w=1;
queue[t].x=n;
visit[n]=1;
queue[t].step=0;
while(t<=w)
{
xx=queue[t].x;
if(xx>k)
{
temp=queue[t].step+xx-k;//如果比結果大,只能減,所以可以直接求出來!
if(temp<minx)
minx=temp;
t++;//這裡的T一定要加,要不然就錯了
continue;
}
if(xx*2<=100000&&(!visit[2*xx]))
{
queue[++w].x=xx*2;
visit[2*xx]=1;//用VISIT來標記,防止重搜
queue[w].step=queue[t].step+1;
if( queue[w].x==k)
{
if(queue[w].step<minx)
return queue[w].step;
else
return minx;
}
}
if(xx+1<=100000&&(!visit[xx+1]))
{
queue[++w].x=xx+1;
visit[xx+1]=1;
queue[w].step=queue[t].step+1;
if( queue[w].x==k)
{
if(queue[w].step<minx)
return queue[w].step;
else
return minx;
}
}
if(xx>=1&&(!visit[xx-1]))
{
queue[++w].x=xx-1;
visit[xx-1]=1;
queue[w].step=queue[t].step+1;
if( queue[w].x==k)
{
if(queue[w].step<minx)
return queue[w].step;
else
return minx;
}
}
t++;
}
return -1;
}
int main ()
{
while(scanf("%d%d",&n,&k)!=EOF)
{
memset(visit,0,sizeof(visit));
if(n>=k)
printf("%d\n",n-k);
else
printf("%d\n",bfs());
}
return 0;
}
#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
struct tree{int x;int step;} queue[800050];
int visit[100050];
int n,k;
int bfs()
{
int t,w,temp,minx=10000000,xx;
t=w=1;
queue[t].x=n;
visit[n]=1;
queue[t].step=0;
while(t<=w)
{
xx=queue[t].x;
if(xx>k)
{
temp=queue[t].step+xx-k;//如果比結果大,只能減,所以可以直接求出來!
if(temp<minx)
minx=temp;
t++;//這裡的T一定要加,要不然就錯了
continue;
}
if(xx*2<=100000&&(!visit[2*xx]))
{
queue[++w].x=xx*2;
visit[2*xx]=1;//用VISIT來標記,防止重搜
queue[w].step=queue[t].step+1;
if( queue[w].x==k)
{
if(queue[w].step<minx)
return queue[w].step;
else
return minx;
}
}
if(xx+1<=100000&&(!visit[xx+1]))
{
queue[++w].x=xx+1;
visit[xx+1]=1;
queue[w].step=queue[t].step+1;
if( queue[w].x==k)
{
if(queue[w].step<minx)
return queue[w].step;
else
return minx;
}
}
if(xx>=1&&(!visit[xx-1]))
{
queue[++w].x=xx-1;
visit[xx-1]=1;
queue[w].step=queue[t].step+1;
if( queue[w].x==k)
{
if(queue[w].step<minx)
return queue[w].step;
else
return minx;
}
}
t++;
}
return -1;
}
int main ()
{
while(scanf("%d%d",&n,&k)!=EOF)
{
memset(visit,0,sizeof(visit));
if(n>=k)
printf("%d\n",n-k);
else
printf("%d\n",bfs());
}
return 0;
}