Problem H
Maximum sum on a torus
Input: Standard Input
Output: Standard Output
A grid that wraps both horizontally and vertically is called a torus. Given a torus where each cell contains an integer, determine the sub-rectangle with the largest sum. The sum of a sub-rectangle is the sum of all the elements in that rectangle. The grid below shows a torus where the maximum sub-rectangle has been shaded.
1
-1
0
0
-4
2
3
-2
-3
2
4
1
-1
5
0
3
-2
1
-3
2
-3
2
4
1
-4
Input
The first line in the input contains the number of test cases (at most 18). Each case starts with an integer N (1≤N≤75) specifying the size of the torus (always square). Then follows N lines describing the torus, each line containing N integers between -100 and 100, inclusive.
Output
For each test case, output a line containing a single integer: the maximum sum of a sub-rectangle within the torus.
Sample Input Output for Sample Input
251 -1 0 0 -42 3 -2 -3 24 1 -1 5 03 -2 1 -3 2-3 2 4 1 -431 2 34 5 67 8 9 1545
題意:大概就是給定一個矩陣。求一個子矩陣之和最大。。。但是多了一點。就是這個矩陣是環形的。。就是比如n列和第1列也算是相連的。
思路:把矩陣擴大4倍。變成一個4倍的矩陣,就解決了環的問題。然後枚舉的時候只要枚舉小於n*n的矩陣。。具體方法和這題類似
代碼:
#include <stdio.h>
#include <string.h>
#include <limits.h>
int t, n, num[160][160], sum[160], he, Max;
void init() {
scanf("%d", &n);
Max = -INT_MAX;
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++) {
scanf("%d", &num[i][j]);
num[i][j + n] = num[i + n][j] = num[i + n][j + n] = num[i][j];
if (Max < num[i][j])
Max = num[i][j];
}
}
int solve() {
for (int i = 0; i < n; i ++) {
for (int j = 0; j < n; j ++) {
memset(sum, 0, sizeof(sum));
for (int k = i; k < n + i; k ++) {
he = 0;
for (int l = j; l < n + j; l ++) {
sum[l] += num[k][l];
he += sum[l];
if (Max < he)
Max = he;
}
}
}
}
return Max;
}
int main() {
scanf("%d", &t);
while (t --) {
init();
printf("%d\n", solve());
}
return 0;
}