題目的意思是:給出一個數N和一個基數D。首先這個數必須是素數。其次,將這個數(1)轉為D進制數(2)將這個D進制數反轉(3)將反轉後的數再轉為十進制數,這個十進制數依然是素數。 這樣我們就輸出“Yes”。
判斷素數:一個數N,如果從2到sqrt(N)都不存在因子,則認為這個數是素數。 注意:0和1不是素數。
將十進制數轉為n進制數:(待補充。。。)
A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line "Yes" if N is a reversible prime with radix D, or "No" if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
bool is_Prime(int a)
{
int i;
if(a==0 || a==1) return false;
//注意是i<=sqrt(),之前弄成i<sqrt,一直出錯
for(i=2; i <= sqrt((double)a); i++){
if( a%i == 0) return false;
}
return true;
}
int change(int n,int d){
int a[100000];
memset(a,0,sizeof(a));
int total = 0;
int j;
int i;
for(i=0; ; i++){
a[i] = n%d;
n /= d;
if(n==0) break;
}
for(j=0; j<=i; j++)
{
total = total*d + a[j];
}
/*也可以這樣寫
do
{
total = total*d + n%d;
n/=d;
} while (n != 0);
*/
return total;
}
int main()
{
int N,D;
while(cin>>N){
if( N<0 ) break;
cin>>D;
if( is_Prime(N) && is_Prime( change(N,D) )){
cout<<"Yes"<<endl;
}
else{
cout<<"No"<<endl;
}
}
return 0;
}