Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9], insert and merge [2,5] in as [1,5],[6,9].
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as [1,2],[3,10],[12,16].
This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10].
給定一組不互相覆蓋的間隔數,將一個新的間隔數插入到他們之中(如果必要的話進行合並).
你可以假設這些間隔數起初是根據他們的起始數排好序的.
樣例1:
給定[1,3],[6,9],插入並合並[2,5] 得到[1,5],[6,9].
樣例2:
給定[1,2],[3,5],[6,7],[8,10],[12,16],插入並合並[4,9] 得到 [1,2],[3,10],[12,16].
這是因為新的間隔數[4,9] 覆蓋了[3,5],[6,7],[8,10].
* 結合方法《Merge Intervals》
* 新加入 newInterval ,重新排序後然後按照上面的方法就好
public class Solution
{
public List insert(List intervals, Interval newInterval)
{
intervals.add(newInterval);
if (intervals == null || intervals.size() <= 1)
return intervals;
return merge(intervals);
}
public static List merge(List intervals)
{
if (intervals == null || intervals.size() <= 1)
return intervals;
// sort intervals by using self-defined Comparator
Collections.sort(intervals, new IntervalComparator());
ArrayList result = new ArrayList();
Interval prev = intervals.get(0);
for (int i = 1; i < intervals.size(); i++)
{
Interval curr = intervals.get(i);
if (prev.end >= curr.start)
{
// merged case
Interval merged = new Interval(prev.start, Math.max(prev.end, curr.end));
prev = merged;
}
else
{
result.add(prev);
prev = curr;
}
}
result.add(prev);
return result;
}
}
class IntervalComparator implements Comparator
{
public int compare(Interval i1, Interval i2)
{
return i1.start - i2.start;
}
}