Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [?2,1,?3,4,?1,2,1,?5,4],
the contiguous subarray [4,?1,2,1] has the largest sum = 6.
click to show more practice.
解題思路:
題意為找出連續的和最大的子數組的和。可以有兩種方法來做,動態規劃以及分治法。
1、動態規劃。求最值問題一般可以考慮動態規劃的方法。d[i]表示子數組nums[k, i]的最大值,其中k>=0並且k
d[i] = nums[i], i==0 或者 d[i-1]<0 d[i] = nums[i] + d[i-1], 其他
然後返回d[]數組的最大值即可。這種方法的空間復雜度為O(n),其實可以優化成O(1)的空間復雜度。時間復雜度為O(n)
class Solution {
public:
int maxSubArray(vector& nums) {
int len = nums.size();
if(len<1){
return 0;
}
int d[len];
d[0]=nums[0];
int maxSum=nums[0];
for(int i=1; i0){
d[i]=nums[i]+d[i-1];
}else{
d[i]=nums[i];
}
maxSum = max(d[i], maxSum);
}
return maxSum;
}
}; (1)最大值子數組在mid前面
(2)最大值子數組在mid後邊
(3)最大值子數組跨過mid
對於(1)(2),可以直接用遞歸來求得,對於(3),我們以mid向兩邊延伸找到最大的和。然後返回三種情況最大的一項即可。
空間復雜度為O(1),時間復雜度為O(n)
class Solution {
public:
int maxSubArray(vector& nums) {
return maxSub(nums, 0, nums.size() - 1);
}
int maxSub(vector& nums, int left, int right){
if(left>right){
return INT_MIN;
}
int mid = (left + right) / 2;
int lMax = maxSub(nums, left, mid - 1);
int rMax = maxSub(nums, mid + 1, right);
int sum = 0;
int lMaxSub = 0;
for(int i=mid - 1; i>=left; i--){
sum += nums[i];
lMaxSub = max(sum, lMaxSub);
}
int rMaxSub = 0;
sum = 0;
for(int i=mid + 1; i<=right; i++){
sum += nums[i];
rMaxSub = max(sum, rMaxSub);
}
return max(max(lMax, rMax), lMaxSub + rMaxSub + nums[mid]);
}
};