C++完成尋覓最低公共父節點的辦法。本站提示廣大學習愛好者:(C++完成尋覓最低公共父節點的辦法)文章只能為提供參考,不一定能成為您想要的結果。以下是C++完成尋覓最低公共父節點的辦法正文
本文實例講述了C++完成尋覓最低公共父節點的辦法,是數據構造中二叉樹的經典算法。分享給年夜家供年夜家參考。詳細辦法以下:
最低公共父節點,意思很好懂得。
思緒1:最低公共父節點知足如許的前提:兩個節點分離位於其左子樹和右子樹,那末界說兩個bool變量,leftFlag和rightFlag,假如在左子樹中,leftFlag為true,假如在右子樹中,rightFlag為true,僅當leftFlag == rightFlag == true時,能力知足前提。
完成代碼以下:
#include <iostream>
using namespace std;
struct Node
{
Node(int i = 0, Node *pLeft = NULL, Node *pRight = NULL) : data(i), left(pLeft),
right(pRight) {}
Node *left;
Node *right;
int data;
};
Node *constructNode(Node **pNode1, Node **pNode2)
{
Node *node12 = new Node(12);
Node *node11 = new Node(11);
Node *node10 = new Node(10);
Node *node9 = new Node(9, NULL, node12);
Node *node8 = new Node(8, node11, NULL);
Node *node7 = new Node(7);
Node *node6 = new Node(6);
Node *node5 = new Node(5, node8, node9);
Node *node4 = new Node(4, node10);
Node *node3 = new Node(3, node6, node7);
Node *node2 = new Node(2, node4, node5);
Node *node1 = new Node(1, node2, node3);
*pNode1 = node6;
*pNode2 = node12;
return node1;
}
bool isNodeIn(Node *root, Node *node1, Node *node2)
{
if (node1 == NULL || node2 == NULL)
{
throw("invalid node1 and node2");
return false;
}
if (root == NULL)
return false;
if (root == node1 || root == node2)
{
return true;
}
else
{
return isNodeIn(root->left, node1, node2) || isNodeIn(root->right, node1, node2);
}
}
Node *lowestFarther(Node *root, Node *node1, Node *node2)
{
if (root == NULL || node1 == NULL || node2 == NULL || node1 == node2)
{
return NULL;
}
bool leftFlag = false;
bool rightFlag = false;
leftFlag = isNodeIn(root->left, node1, node2);
rightFlag = isNodeIn(root->right, node1, node2);
if (leftFlag == true && rightFlag == true)
{
return root;
}
else if (leftFlag == true)
{
return lowestFarther(root->left, node1, node2);
}
else
{
return lowestFarther(root->right, node1, node2);
}
}
void main()
{
Node *node1 = NULL;
Node *node2 = NULL;
Node *root = constructNode(&node1, &node2);
cout << "node1: " << node1->data << endl;
cout << "node2: " << node2->data << endl;
cout << "root: " << root->data << endl;
Node *father = lowestFarther(root, node1, node2);
if (father == NULL)
{
cout << "no common father" << endl;
}
else
{
cout << "father: " << father->data << endl;
}
}
這類成績在面試的時刻常會碰到,對此須要斟酌以下情況:
1. node1和node2指向統一節點,這個若何處置
2. node1或node2有不為葉子節點的能夠性嗎
3. node1或node2必定在樹中嗎
還要斟酌一個效力成績,上述代碼頂用了兩個遞歸函數,並且存在不用要的遞歸進程,細心思慮,其實一個遞歸進程足以處理此成績
完成代碼以下:
#include <iostream>
using namespace std;
struct Node
{
Node(int i = 0, Node *pLeft = NULL, Node *pRight = NULL) : data(i),
left(pLeft), right(pRight) {}
int data;
Node *left;
Node *right;
};
Node *constructNode(Node **pNode1, Node **pNode2)
{
Node *node12 = new Node(12);
Node *node11 = new Node(11);
Node *node10 = new Node(10);
Node *node9 = new Node(9, NULL, node12);
Node *node8 = new Node(8, node11, NULL);
Node *node7 = new Node(7);
Node *node6 = new Node(6);
Node *node5 = new Node(5, node8, node9);
Node *node4 = new Node(4, node10);
Node *node3 = new Node(3, node6, node7);
Node *node2 = new Node(2, node4, node5);
Node *node1 = new Node(1, node2, node3);
*pNode1 = node6;
*pNode2 = node5;
return node1;
}
bool lowestFather(Node *root, Node *node1, Node *node2, Node *&dest)
{
if (root == NULL || node1 == NULL || node2 == NULL || node1 == node2)
return false;
if (root == node1 || root == node2)
return true;
bool leftFlag = lowestFather(root->left, node1, node2, dest);
bool rightFlag = lowestFather(root->right, node1, node2, dest);
if (leftFlag == true && rightFlag == true)
{
dest = root;
}
if (leftFlag == true || rightFlag == true)
return true;
}
int main()
{
Node *node1 = NULL;
Node *node2 = NULL;
Node *root = constructNode(&node1, &node2);
bool flag1 = false;
bool flag2 = false;
Node *dest = NULL;
bool flag = lowestFather(root, node1, node2, dest);
if (dest != NULL)
{
cout << "lowest common father: " << dest->data << endl;
}
else
{
cout << "no common father!" << endl;
}
return 0;
}
上面再換一種方法的寫法以下:
#include <iostream>
using namespace std;
struct Node
{
Node(int i = 0, Node *pLeft = NULL, Node *pRight = NULL) : data(i),
left(pLeft), right(pRight) {}
int data;
Node *left;
Node *right;
};
Node *constructNode(Node **pNode1, Node **pNode2)
{
Node *node12 = new Node(12);
Node *node11 = new Node(11);
Node *node10 = new Node(10);
Node *node9 = new Node(9, NULL, node12);
Node *node8 = new Node(8, node11, NULL);
Node *node7 = new Node(7);
Node *node6 = new Node(6);
Node *node5 = new Node(5, node8, node9);
Node *node4 = new Node(4, node10);
Node *node3 = new Node(3, node6, node7);
Node *node2 = new Node(2, node4, node5);
Node *node1 = new Node(1, node2, node3);
*pNode1 = node11;
*pNode2 = node12;
return node1;
}
Node* lowestFather(Node *root, Node *node1, Node *node2)
{
if (root == NULL || node1 == NULL || node2 == NULL || node1 == node2)
return NULL;
if (root == node1 || root == node2)
return root;
Node* leftFlag = lowestFather(root->left, node1, node2);
Node* rightFlag = lowestFather(root->right, node1, node2);
if (leftFlag == NULL)
return rightFlag;
else if (rightFlag == NULL)
return leftFlag;
else
return root;
}
int main()
{
Node *node1 = NULL;
Node *node2 = NULL;
Node *root = constructNode(&node1, &node2);
bool flag1 = false;
bool flag2 = false;
Node *dest = NULL;
Node* flag = lowestFather(root, node1, node2);
if (flag != NULL)
{
cout << "lowest common father: " << flag->data << endl;
}
else
{
cout << "no common father!" << endl;
}
return 0;
}
願望本文所述對年夜家C++法式算法設計的進修有所贊助。